【題目】某班同學(xué)為了解2019年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行整理如下:
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
請解答下列問題:
(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2)求該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過20t的家庭大約有多少戶?
【答案】(1)12,0.08;(2)68%;(3)大約有120戶.
【解析】
(1)根據(jù)0<x≤5中頻數(shù)為6,頻率為0.12,則調(diào)查總戶數(shù)為6÷0.12=50,進(jìn)而得出在5<x≤10范圍內(nèi)的頻數(shù)以及在20<x≤25范圍內(nèi)的頻率;
(2)根據(jù)(1)中所求即可得出不超過15t的家庭總數(shù)即可求出,不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)根據(jù)樣本數(shù)據(jù)中超過20t的家庭數(shù),即可得出1000戶家庭超過20t的家庭數(shù).
(1)
如圖所示:根據(jù)0<x≤5中頻數(shù)為6,頻率為0.12,
則6÷0.12=50,50×0.24=12戶,4÷50=0.08,
故表格從上往下依次是:12戶和0.08;
(2)×100%=68%;
(3)1000×(0.08+0.04)=120戶,
答:該小區(qū)月均用水量超過20t的家庭大約有120戶.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,四個(gè)頂點(diǎn)坐標(biāo)分別為A(m,n),B(1,2),C(m+﹣1,2),D(m+,n).求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,放入6個(gè)形狀和大小都相同的小長方形后,還有一部分空余(陰影部分),已知小長方形的長為a,寬為b,且a>b.
(1)用含a、b的代數(shù)式表示長方形ABCD的長AD和寬AB.
(2)用含a、b的代數(shù)式表示陰影部分的面積(列式表示即可,不要求化簡).
(3)若a=7cm,b=2cm,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□ABCD邊BC在x軸上,頂點(diǎn)A在y軸上,對角線AC所在的直線為y=+6,且AC=AB,若點(diǎn)P從點(diǎn)A出發(fā)以1cm/s的速度向終點(diǎn)O運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)以2cm/s的速度沿射線CB運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)O時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)直接寫出頂點(diǎn)D的坐標(biāo)(______,______),對角線的交點(diǎn)E的坐標(biāo)(______,______);
(2)求對角線BD的長;
(3)是否存在t,使S△POQ=SABCD,若存在,請求出的t值;不存在說明理由.
(4)在整個(gè)運(yùn)動(dòng)過程中,PQ的中點(diǎn)到原點(diǎn)O的最短距離是______cm,(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根為x=2019,則一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根為( 。
A.B.2020C.2019D.2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一元二次方程中,有著名的韋達(dá)定理:對于一元二次方程ax2+bx+c=0(a≠0),如果方程有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=﹣,x1x2=(說明:定理成立的條件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以該方程有兩個(gè)不等的實(shí)數(shù)解.記方程的兩根為x1,x2,那么x1+x2=,x1x2=﹣,請根據(jù)閱讀材料解答下列各題:
(1)已知方程x2﹣3x﹣2=0的兩根為x1、x2,且x1>x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.
①是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請說明理由.
②求使的值為整數(shù)的實(shí)數(shù)k的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線與x軸的交點(diǎn)分別為A、B(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C.若a、b、c滿足,則稱該拋物線為“正定拋物線”;若a、b、c滿足,則稱該拋物線為“負(fù)定拋物線”.特別地,若某拋物線既是“正定拋物線”又是“負(fù)定拋物線”,則稱該拋物線為“對稱拋物線”.
(1)“正定拋物線”必經(jīng)過x軸上的定點(diǎn)______;“負(fù)定拋物線”必經(jīng)過x軸上的定點(diǎn)______.
(2)若拋物線是“對稱拋物線”,且△ABC是等邊三角形,求此拋物線對應(yīng)的函數(shù)表達(dá)式.
(3)若拋物線是“正定拋物線”,設(shè)此拋物線交y軸于點(diǎn)D,△BCD的面積為S,求S與b之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 , 中, ,線段在射線上,且,線段沿射線運(yùn)動(dòng),開始時(shí),點(diǎn)與點(diǎn)重合,點(diǎn)到達(dá)點(diǎn)時(shí)運(yùn)動(dòng)停止,過點(diǎn)作,與射線相交于點(diǎn),過點(diǎn)作的垂線,與射線相交于點(diǎn).設(shè),四邊形與重疊部分的面積為關(guān)于的函數(shù)圖象如圖所示(其中時(shí),函數(shù)的解析式不同)
(1)填空: 的長是 ;
(2)求關(guān)于的函數(shù)解析式,并寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若以一條線段為對角線作正方形,則稱該正方形為這條線段的“對角線正方形”.例如,圖①中正方形ABCD即為線段BD的“對角線正方形”.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線CA﹣AB以5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線段PB的“對角線正方形”,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線段PB的“對角線正方形”的面積為S(cm2).
(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB的“對角線正方形”.
(2)當(dāng)線段PB的“對角線正方形”有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.
(3)當(dāng)點(diǎn)P沿折線CA﹣AB運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)關(guān)系式.
(4)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)線段PB的“對角線正方形”至少有一個(gè)頂點(diǎn)落在∠A的平分線上時(shí),直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com