【題目】已知一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊上的高為__;三角形的兩邊分別為35要使這個三角形組成直角三角形,則第三邊長是__

【答案】4.8 4

【解析】

根據(jù)勾股定理求出斜邊,設(shè)斜邊上的高為h,根據(jù)同一三角形面積一定,列方程求出這個直角三角形斜邊上的高;根據(jù)勾股定理的逆定理,可設(shè)第三條邊長為x,如果滿足32+52x232+x252,即為直角三角形,解出x的值即可解答.

解:∵直角三角形的兩條直角邊分別為6,8,

∴斜邊為10,

設(shè)斜邊上的高為h,

則直角三角形的面積為×6×8×10h,

解得:h4.8

這個直角三角形斜邊上的高為4.8;

三角形的兩邊分別為35,設(shè)第三條邊長為x,

∵三角形是直角三角形,

32+52x232+x252

解得,xx4

即第三邊長是4

故答案為:4.8;4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,EF,G,H分別是邊ABBC,CD,DA的中點.請你添加一個條件,使四邊形EFGH為矩形,應(yīng)添加的條件是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】岳飛是我國古代宋朝的民族英雄,曾任通泰鎮(zhèn)撫史、兼泰州知州.據(jù)說在泰州抗擊金兵期間,有一次曾向?qū)㈩I(lǐng)們講了如下一個布陣圖,如圖4是一座城池,在城池的四周設(shè)了八個哨所,一共由24個衛(wèi)士把守,按直線算,每邊都有11個人,后來由于軍情發(fā)生變化,連續(xù)四次給哨所增添兵力,每次增加4人,但要求在增加人員后,仍然保持每邊11個人把守.請問,兵力應(yīng)如何調(diào)整?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校研究性學習小組在研究有關(guān)二次函數(shù)及其圖象性質(zhì)的問題時,發(fā)現(xiàn)了兩個重要結(jié)論.一是發(fā)現(xiàn)拋物線y=ax2+2x+3a≠0),當實數(shù)a變化時,它的頂點都在某條直線上;二是發(fā)現(xiàn)當實數(shù)a變化時,若把拋物線y=ax2+2x+3的頂點的橫坐標減少,縱坐標增加,得到A點的坐標;若把頂點的橫坐標增加,縱坐標增加,得到B點的坐標,則AB兩點一定仍在拋物線y=ax2+2x+3上.

1)請你協(xié)助探求出當實數(shù)a變化時,拋物線y=ax2+2x+3的頂點所在直線的解析式;

2)問題(1)中的直線上有一個點不是該拋物線的頂點,你能找出它來嗎?并說明理由;

3)在他們第二個發(fā)現(xiàn)的啟發(fā)下,運用一般﹣一特殊﹣一般的思想,你還能發(fā)現(xiàn)什么?你能用數(shù)學語言將你的猜想表述出來嗎?你的猜想能成立嗎?若能成立請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 的直徑, 的平分線交于點,交于點,過點的切線的延長線于點,連接.

(1)求證: ;

(2)若, ,求線段、的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A1,m),B4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點.

(1)求這條拋物線的解析式;

(2)寫出拋物線的開口方向、對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中.直線y=﹣x+3與x軸交于點B,與y軸交于點C,拋物線y=ax2+bx+c經(jīng)過B,C兩點,與x軸負半軸交于點A,連結(jié)AC,A(-1,0)

(1)求拋物線的解析式;

(2)點P(m,n)是拋物線上在第一象限內(nèi)的一點,求四邊形OCPB面積S關(guān)于m的函數(shù)表達式及S的最大值;

(3)若M為拋物線的頂點,點Q在直線BC上,點N在直線BM上,Q,M,N三點構(gòu)成以MN為底邊的等腰直角三角形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖,探究:

1)一個正方體組合圖形的主視圖、左視圖(如圖1)所示.

①這個幾何體可能是(圖2)甲、乙中的   ;

②這個幾何體最多可由   個小正方體構(gòu)成,請在圖3中畫出符合最多情況的一個俯視圖.

2)如圖,已知一平面內(nèi)的四個點A、B、C、D,根據(jù)要求用直尺畫圖.

①畫線段AB,射線AD;

②找一點M,使M點即在射線AD上,又在直線BC上;

③找一點N,使NA、BC、D四個點的距離和最短.

查看答案和解析>>

同步練習冊答案