【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

由拋物線的對(duì)稱軸的位置判斷ab的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

①∵拋物線對(duì)稱軸是y軸的右側(cè),

ab0,

∵與y軸交于負(fù)半軸,

c0,

abc0,

故①正確;

②∵a0,x=﹣1,

﹣b2a,

2a+b0,

故②正確;

③∵拋物線與x軸有兩個(gè)交點(diǎn),

b2﹣4ac0,

故③正確;

④當(dāng)x=﹣1時(shí),y0,

a﹣b+c0,

故④正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過(guò)點(diǎn)A(–3,0)、B(1,0).

(1)求平移后的拋物線的表達(dá)式.

(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BPCP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?

(3)y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年,隨著電子產(chǎn)品的廣泛應(yīng)用,學(xué)生的近視發(fā)生率出現(xiàn)低齡化趨勢(shì),引起了相關(guān)部門的重視.某區(qū)為了了解在校學(xué)生的近視低齡化情況,對(duì)本區(qū)7-18歲在校近視學(xué)生進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,并繪制了以下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:

1)這次抽樣調(diào)查中共調(diào)查了近視學(xué)生 人;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中10-12歲部分的圓心角的度數(shù)是

4)據(jù)統(tǒng)計(jì),該區(qū)7-18歲在校學(xué)生近視人數(shù)約為10萬(wàn),請(qǐng)估計(jì)其中7-12歲的近視學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)舉行數(shù)學(xué)趣味競(jìng)賽,購(gòu)買A,B兩種筆記本作為獎(jiǎng)品,這兩種筆記本的單價(jià)分別是12元和8元. 根據(jù)比賽設(shè)獎(jiǎng)情況,需購(gòu)買兩種筆記本共30本,并且購(gòu)買A筆記本的數(shù)量要少于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量的

1)求A筆記本數(shù)量的取值范圍;

2)購(gòu)買這兩種筆記本各多少本時(shí),所需費(fèi)用最。孔钍≠M(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝2015年元且的到來(lái),學(xué)校決定舉行慶元旦迎新年文藝演出,根據(jù)演出需要,用700元購(gòu)進(jìn)甲、乙兩種花束共260朵,其中甲種花束比乙種花束少用100元,已知甲種花束單價(jià)比乙種花束單價(jià)高20%,乙種花束的單價(jià)是多少元?甲、乙兩種花束各購(gòu)買了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為、.

(1)關(guān)于y軸成軸對(duì)稱,則三個(gè)頂點(diǎn)坐標(biāo)分別為_________,____________,____________;

(2)Px軸上一點(diǎn),則的最小值為____________;

(3)計(jì)算的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線x軸從左至右交于A,B兩點(diǎn),與y軸交于點(diǎn)c.

(1)若拋物線過(guò)點(diǎn)T(1,-),求拋物線的解析式;

(2)在第二象限內(nèi)的拋物線上是否存在點(diǎn)D,使得以A、B、D三點(diǎn)為頂點(diǎn)的三角形與△ABC相似?若存在,求a的值;若不存在,請(qǐng)說(shuō)明理由.

(3)如圖2,在(1)的條件下,點(diǎn)P的坐標(biāo)為(-1,1),點(diǎn)Q(6,t)是拋物線上的點(diǎn),在x軸上,從左至右有M、N兩點(diǎn),且MN=2,問(wèn)MNx軸上移動(dòng)到何處時(shí),四邊形PQNM的周長(zhǎng)最?請(qǐng)直接寫出符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AEBC于點(diǎn)P,交DC的延長(zhǎng)線于點(diǎn)E,點(diǎn)PAE的中點(diǎn).

1)求證:點(diǎn)P也是BC的中點(diǎn).

2)若,且,求AP的長(zhǎng).

3)在(2)的條件下,若線段AE上有一點(diǎn)Q,使得是等腰三角形,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,△ABC⊙O的內(nèi)接三角形,AB=AC,點(diǎn)P 的中點(diǎn),連結(jié)PA,PB,PC.

(1)如圖(a),∠BPC=60°,求證:AC=AP;

(2)如圖(b),sin∠BPC=,tan∠PAB的值.

     

查看答案和解析>>

同步練習(xí)冊(cè)答案