如圖,直線y1=2x與雙曲線y2=
8x
相交于點A、E.另一直線y3=x+b與雙曲線交于點A、B,與x、y精英家教網(wǎng)軸分別交于點C、D.直線EB交x軸于點F.
(1)求A、B兩點的坐標,并比較線段OA、OB的長短;
(2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.
分析:(1)由于點A在直線y1=2x與雙曲線y2=
8
x
上,解方程組
Y=2X
Y=
8
X
,可得點A坐標,再將求出
y=
8
x
yB
xB
=
1
2
的解集即是B點坐標,再利用勾股定理求出AO與BO的長;
(2)結(jié)合圖象當x<-2時,取同一值時,函數(shù)圖象在上面時函數(shù)值就大,得出y2>y3>y1;
(3)欲證△DOC∽△CBF,已有∠OCD=∠BCF,再有一角對應相等即可,求出直線AB、EB解析式,根據(jù)系數(shù)可判定他們垂直,即可得出解集.
解答:解:(1)由題意得:
y=2x
y=
8
x
,
解得
x=2
y=4
,或
x=-2
y=-4
,
∴A(-2,-4),E(2,4),
將A坐標代入y3=x+b中,得b=-2,即y3=x-2,
聯(lián)立得:
y=
8
x
y=x-2

解得:
x=4
y=2
,
∴B(4,2);
OA=
22+42
,OB=
22+42
,
∴AO=BO,

(2)∵A點坐標為(-2,-4),
∴結(jié)合圖象當x<-2時,y2>y3>y1;

(3)設直線EB的解析式為y=k1x+b1,直線AB的解析式為y=k2x+b2,
則有
4k1+b1=2
2k1+b1=4
,
-2k2+b2=-4
4k2+b2=2
,
解得:
k1=-1
b1=6
b2=-2
k2=1

∵k1•k2=-1,
∴AB⊥EF,∴∠CBF=∠DOC=90°
∵∠OCD=∠BCF,
∴△DOC∽△CBF.
點評:此題主要考查了函數(shù)交點坐標的求法以及相似三角形的判定和勾股定理的應用等知識,根據(jù)已知將函數(shù)解析式聯(lián)立求出公共解集是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y1=2x與反比例函數(shù)y2=
kx
的圖象在第一象限的交點為A,AB垂直于x軸,垂足為B.已知OB=1.
(1)求點A的坐標和這個反比例函數(shù)的關(guān)系式;
(2)根據(jù)圖象回答:當x取何值時,y1>y2?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y1=2x+b與x軸、y軸交于點A、B,與雙曲線y2=
kx
(x<0)交于點C、D,已知點C的坐標為(-1,4).
(1)求直線和雙曲線的解析式;
(2)利用圖象,說出x在什么范圍內(nèi)取值時,有y1>y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:直線y1=-2x+3和直線y2=mx-1分別交y軸于點A、B,兩直線交于點C(1,n).
(1)求m,n的值.           
(2)求△ABC的面積.
(3)請根據(jù)圖象直接寫出:當y1<y2時,向變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y1=2x與雙曲線數(shù)學公式相交于點A、E.另一直線y3=x+b與雙曲線交于點A、B,與x、y軸分別交于點C、D.直線EB交x軸于點F.
(1)求A、B兩點的坐標,并比較線段OA、OB的長短;
(2)由函數(shù)圖象直接寫出函數(shù)y2>y3>y1的自變量x的取值范圍;
(3)求證:△COD∽△CBF.

查看答案和解析>>

同步練習冊答案