【題目】如圖,在平面內(nèi),點是直線上一點,,射線不動,射線,同時開始繞點順時針轉(zhuǎn)動,射線首次回到起始位置時兩線同時停止轉(zhuǎn)動,射線,的轉(zhuǎn)動速度分別為每秒和每秒.若轉(zhuǎn)動秒時,射線,,中的一條是另外兩條組成角的角平分線,則______秒.
【答案】4或5
【解析】
根據(jù)已知條件可知,在第t秒時,射線OA轉(zhuǎn)過的角度為40°t,射線OB轉(zhuǎn)過的角度為20°t,然后按照OA、OB、OC三條射線構(gòu)成相等的角分三種情況討論:①當(dāng)OA平分∠BOC;②當(dāng)OC平分∠AOB;③當(dāng)OB平分∠AOC,分別列方程即可求出t的值.
解:根據(jù)題意,在第t秒時,射線OA轉(zhuǎn)過的角度為40°t,射線OB轉(zhuǎn)過的角度為20°t,
①當(dāng)OA,OB轉(zhuǎn)到OA′,OB′的位置時,如圖①所示,∠A′OC=∠A′OB′,
∵∠A′OC=180°-40°t,∠A′OB′=∠AOA′-∠AOB-∠BOB′=40°t-60°-20°t=20°t-60°,
∴180°-40°t =20°t-60°,
即t=4;
②當(dāng)OA,OB轉(zhuǎn)到OA′,OB′的位置時,如圖②所示,∠A′OC=∠B′OC,
∵∠A′OC=40°t-180°,∠B′OC=180°-∠AOB-∠BOB′=180°-60°-20°t=120°-20°t,
∴40°t-180°=120°-20°t,
即t=5;
③當(dāng)OA,OB轉(zhuǎn)到OA′,OB′的位置時,如圖③,∠B′OC=∠A′OB′,
∵∠B′OC=20°t-120°,∠A′OB′=∠A′OC=(180°-∠AOA′)=[180°-(360°-40°t)]=20°t-90°,
∴20°t-120°=20°t-90°,此時方程不成立.
綜上所述:t的值為4或5.
故答案:4或5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于O點,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于給定的一次函數(shù)y=ax+b(a≠0),把形如的函數(shù)稱為一次函數(shù)y=ax+b(a≠0)的衍生函數(shù).已知矩形ABCD的頂點坐標(biāo)分別為A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函數(shù)y=2x+l.
①若點P(-1,m)在這個一次函數(shù)的衍生函數(shù)圖像上,則m= .
②這個一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點坐標(biāo)分別為 .
(2)當(dāng)函數(shù)y=kx-3(k>0)的衍生函數(shù)的圖象與矩形ABCD有2個交點時,k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,對于一個圖形通過不同的方法計算圖形的面積,可以得到一個數(shù)學(xué)等式,例如由圖 1 可以得到 (a 2b)(a b) a 3ab 2b,請解答下列問題:
(1)寫出圖 2 所表示的數(shù)學(xué)等式: ;
(2)已知 a b c 12 ,ab bc ac 40 ,利用(1)中所得結(jié)論.求abc的值;
(3)圖 3 中給出了若干個邊長為 a 和邊長為 b 的小正方形紙片、若干個長為 b 寬為 a 的長方 形紙片,選用這些紙片拼出一個圖形,使得它的面積是 2a 7ab 3b .畫出該圖形,并利用該圖形把多項式 2a 7ab 3b分解因式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東西向的綠道上設(shè)有一個崗?fù),佳佳從崗(fù)こ霭l(fā)以的速度沿綠道巡邏.規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄(單位:)如下:
(1)第六次巡邏結(jié)束時,佳佳在崗?fù)さ哪囊贿叄?/span>
(2)在第幾次巡邏結(jié)束時,佳佳離崗?fù)ぷ钸h(yuǎn)?
(3)佳佳一共巡邏多少時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是BA延長線上一點,CD切⊙O于點D,弦DE∥CB,Q是AB上的一點,CA=1,CD=OA.
(1)求⊙O的半徑R;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點,則y1>y2.
其中說法正確的是( 。
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進(jìn)路線,在BC的中點M處放置了一臺定位儀器,設(shè)尋寶者行進(jìn)的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進(jìn),且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進(jìn)路線可能為:
A. A→O→B B. B→A→C C. B→O→C D. C→B→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=0.5千米,則該沙田的面積為________________平方千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com