【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足 = ,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.

(1)求證:△ADF∽△AED;

(2)求FG的長(zhǎng);

(3)求證:tan∠E=

【答案】證明見解析;

②2

證明見解析.

【解析】試題分析:1由垂徑定理可得弧AC=AD,根據(jù)等弧所對(duì)的圓周角相等,可得∠ADF=∠AED,,根據(jù)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似的判定定理,即可證得ADF∽△AED;

2)根據(jù) = CF=2,可得FD=6,故可得CD的長(zhǎng),根據(jù)垂徑定理即可求得CG的長(zhǎng),再根據(jù)CG-CF即可得FG的長(zhǎng)。

3)在Rt△AGF中由勾股定理求得AG的長(zhǎng),根據(jù)垂徑定理和同弧所對(duì)的圓周角相等的性質(zhì),可知E=∠ADF,再根據(jù)三角函數(shù)定義即可證得tanE的值.

解:①∵AB是⊙O的直徑,弦CD⊥AB,

∴DG=CG,

∴弧AD=弧AC,∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),

∴△ADF∽△AED;

②∵=,CF=2,

∴FD=6

∴CD=DF+CF=8,

∴CG=DG=4,

∴FG=CG﹣CF=2;

③∵AF=3FG=2,∴AG=

tan∠E=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側(cè)面簡(jiǎn)化結(jié)構(gòu)圖,支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點(diǎn)E、D,現(xiàn)測(cè)得厘米, 厘米,

求椅子的高度即椅子的座板DF與地面MN之間的距離精確到1厘米

求椅子兩腳B、C之間的距離精確到1厘米參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2-(m+3)x+9的頂點(diǎn)Cx軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點(diǎn),與x、y軸分別交于D、E兩點(diǎn).

(1)m的值;

(2)A、B兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩班舉行電腦漢字輸入比賽,各選10名選手參賽,各班參賽學(xué)生每分鐘輸入漢字個(gè)數(shù)統(tǒng)計(jì)如下表:

輸入漢字個(gè)數(shù)(個(gè))

132

133

134

135

136

137

甲班人數(shù)人)

1

0

2

4

1

2

乙班人數(shù)(人)

0

1

4

1

2

2

請(qǐng)分別判斷下列同學(xué)是說法是否正確,并說明理由.

1)兩個(gè)班級(jí)輸入漢字個(gè)數(shù)的平均數(shù)相同;

2)兩個(gè)班學(xué)生輸入漢字的中位數(shù)相同眾數(shù)也相同;

3)甲班學(xué)生比乙班學(xué)生的成績(jī)穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①內(nèi)錯(cuò)角相等;②對(duì)頂角相等;③三角形的一個(gè)外角大于任何一個(gè)內(nèi)角;④若三條線段、、滿足,則三條線段、、一定能組成三角形其中正確的個(gè)數(shù)是(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 (1)所示,圓內(nèi)接△ABC中,AB=BC=CA,OD,OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G.

(1)求證陰影部分四邊形OFCG的面積是△ABC面積的;

(2)如圖 (2)所示,若∠DOE保持120°角度不變,求證當(dāng)∠DOE繞著O點(diǎn)旋轉(zhuǎn)時(shí),由兩條半徑和△ABC的兩條邊圍成的圖形(圖中陰影部分)面積始終是△ABC的面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)G,H分別是正六邊形ABCDEF的邊BC,CD上的點(diǎn),且BG=CHAGBH于點(diǎn)P

1)求證:ABG≌△BCH

2)求∠APH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點(diǎn)A(1,m),這兩條直線分別與x軸交于B,C兩點(diǎn).

(1)求yx之間的函數(shù)關(guān)系式;

(2)直接寫出當(dāng)x>0時(shí),不等式x+b的解集;

(3)若點(diǎn)Px軸上,連接APABC的面積分成1:3兩部分,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接線下開學(xué),某學(xué)校決定對(duì)原有的排水系統(tǒng)進(jìn)行改造,如果甲組先做5天后,剩下的工程由乙組單獨(dú)承擔(dān),還需7.5天才能完工,為了早日完成工程,甲乙兩組合作施工,6天完成了任務(wù);甲乙兩組單獨(dú)完成此項(xiàng)工程各需要多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案