【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°.將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM
(2)當(dāng)AE=1時,求EF的長.
【答案】(1)∵△DAE逆時針旋轉(zhuǎn)90°得到△DCM
∴DE=DM ∠EDM=90°
∴∠EDF + ∠FDM=90°
∵∠EDF=45°
∴∠FDM =∠EDM=45°
∵ DF= DF
∴△DEF≌△DMF
∴ EF=MF …
(2) 設(shè)EF=x ∵AE=CM=1
∴ BF=BM-MF=BM-EF=4-x
∵ EB=2
在Rt△EBF中,由勾股定理得
即
解之,得
【解析】(1)由折疊可得DE=DM,∠EDM為直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF為45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF與三角形MDF全等,由全等三角形的對應(yīng)邊相等可得出EF=MF;
(2)由第一問的全等得到AE=CM=1,正方形的邊長為3,用AB-AE求出EB的長,再由BC+CM求出BM的長,設(shè)EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為EF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東營市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計劃購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦、每臺電子白板各多少萬元?
(2)根據(jù)學(xué)校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,點D在BA的延長線上,CD與⊙O交于另一點E,DE=OB=2,∠D=20°,則弧BC的長度為( 。
A. π B. π C. π D. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點,BP與⊙O交于點C.
(1)如圖①,若∠P=35°,求∠ABP的度數(shù);
(2)如圖②,若D為AP的中點,求證:直線CD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△ABC是圓的內(nèi)接三角形,∠BAC與∠ABC的角平分線AE、BE相交于點E,延長AE交圓于點D,連接BD、DC,且∠BCA=60°.
(1)求證:△BED為等邊三角形;
(2)若∠ADC=30°,⊙O的半徑為2,求BD長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)從如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面五條信息:
①c<0;②abc>0;③2a﹣b=0;④a+b+c>0;⑤當(dāng)﹣3<x<1時,y<0.
你認(rèn)為其中正確信息的個數(shù)有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種市場均衡模型是用一次函數(shù)和二次函數(shù)來刻化的:根據(jù)市場調(diào)查,某種商品的市場需求量y1(噸)與單價x(百元)之間的關(guān)系可看作是二次函數(shù)y1=4﹣x2,該商品的市場供應(yīng)量y2(噸)與單價x(百元)之間的關(guān)系可看作是一次函數(shù)y2=4x﹣1.
(1)當(dāng)需求量等于供應(yīng)量時,市場達到均衡.此時的單價x(百元)稱為均衡價格,需求量(供應(yīng)量)稱為均衡數(shù)量.求所述市場均衡模型的均衡價格和均衡數(shù)量.
(2)當(dāng)該商品單價為50元時,此時市場供應(yīng)量與需求量相差多少噸?
(3)根據(jù)以上信息分析,當(dāng)該商品①供不應(yīng)求②供大于求時,該商品單價分別會在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從城出發(fā)勻速行駛至城.在整個行駛過程中,甲、乙兩車離城的距離(千米)與甲車行駛的時間(小時)之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論:
①兩城相距千米;
②乙車比甲車晚出發(fā)小時,卻早到小時;
③乙車出發(fā)后小時追上甲車;
④當(dāng)甲、乙兩車相距千米時,
其中正確的結(jié)論有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:把一張給定大小的矩形卡片ABCD放在寬度為10mm的橫格紙中,恰好四個頂點都在橫格線上,已知α=25°,求長方形卡片的周長。(精確到1mm,參考數(shù)據(jù): sin25°≈0,cos25°≈0.9,tan25°≈0.5).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com