【題目】已知直線l1:y=﹣x+3與直線l2:y=x+1相交于點A.并且l1交x軸于點B,l2交x軸于點C.若平面上有一點D,構成平行四邊形ABDC,請寫出D點坐標

【答案】(1,﹣2)
【解析】解:當y=﹣x+3=0時,x=3, ∴點B的坐標為(3,0);
當y=x+1時,x=﹣1,
∴點C的坐標為(﹣1,0).
聯(lián)立兩直線解析式成方程組,
,解得:
∴點A的坐標為(1,2).
∵四邊形ABDC為平行四邊形,
∴線段AD、BC的中點重合,
∴點D的坐標為(3﹣1﹣1,0+0﹣2),即(1,﹣2).
所以答案是:(1,﹣2).
【考點精析】認真審題,首先需要了解平行四邊形的性質(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC , D為邊BC上一點,以ABBD為鄰邊作平行四邊形ABDE , 連接ADEC . 若BDCD , 求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.

(1)求證:△ACE≌△BCD;

(2)求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在鈍角△ABC中,點D是BC的中點,分別以AB和AC為斜邊向△ABC的外側作等腰直角三角形ABE和等腰直角三角形ACF,M、N分別為AB、AC的中點,連接DM、DN、DE、DF、EM、EF、FN.求證:

(1)△EMD≌△DNF;

(2)△EMD∽△EAF;

(3)DE⊥DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知O為直線AD上一點,射線OC,射線OB,∠AOC與∠AOB互補,OM,ON分別為∠AOC,∠AOB的平分線,若∠MON=40°.

(1)∠COD與∠AOB相等嗎?請說明理由;
(2)試求∠AOC與∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,BAD的角平分線AE交CD于點F,交BC的延長線于點E.

(1)求證:BE=CD;

(2)連接BF,若BFAE,BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要把1張50元的人民幣兌換成面額為5元和10元的人民幣,面值5元x張,面值10元y張,那么x與y間的關系為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一塊等腰直角三角形鐵板,通過切割焊接成一個含有45°角的平行四邊形,設計一種簡要的方案并給出正確的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

“共享單車”是指企業(yè)與政府合作,在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務區(qū)等提供自行車共享的一種服務,是共享經(jīng)濟的一種新形態(tài).共享單車的出現(xiàn)讓更多的用戶有了更好的代步選擇.自行車也代替了一部分公共交通甚至打車的出行.

Quest Mobile監(jiān)測的M型與O型單車從2016年10月——2017年1月的月度用戶使用情況如下表所示:

根據(jù)以上材料解答下列問題:

(1)仔細閱讀上表,將O型單車總用戶數(shù)用折線圖表示出來,并在圖中標明相應數(shù)據(jù);

(2)根據(jù)圖表所提提供的數(shù)據(jù),選擇你所感興趣的方面,寫出一條你發(fā)現(xiàn)的結論.

查看答案和解析>>

同步練習冊答案