【題目】將不等式組 的解集表示在數(shù)軸上,下面表示正確的是( )
A.
B.
C.
D.
【答案】A
【解析】解: 解不等式①得,x≤3
解不等式②得,x>﹣4
在數(shù)軸上表示為:
故選:A.
【考點精析】根據(jù)題目的已知條件,利用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法的相關知識可以得到問題的答案,需要掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列單項式的排列規(guī)律:3x,,照這樣排列第10個單項式應是
A. 39x10 B. -39 x10 C. -43 x10 D. 43 x10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明學了有理數(shù)的乘方后,知道23=8,25=32,他問老師,有沒有20,2﹣3,如果有,等于多少?老師耐心提示他:25÷23=4,25﹣3=4,即25÷23=25﹣3=22=4,…“哦,我明白了了,”小明說,并且很快算出了答案,親愛的同學,你想出來了嗎?
(1)請仿照老師的方法,推算出20,2﹣3的值.
(2)據(jù)此比較(﹣3)﹣2與(﹣2)﹣3的大小.(寫出計算過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結論:
①EF⊥AC; ②四邊形ADFE為菱形; ③AD=4AG; ④FH=BD
其中正確的結論有( ).
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校隨機調查了部分學生,就“你最喜歡的圖書類別”(只選一項)對學生課外閱讀的情況作了調查統(tǒng)計,將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖表提供的信息解答下列問題:
種類 | 頻數(shù) | 頻率 |
卡通畫 | a | .45 |
時文雜志 | b | 0.16 |
武俠小說 | 50 | c |
文學名著 | d | e |
(1)這次隨機調查了______名學生,統(tǒng)計表中a=______,d=______;
(2)假如以此統(tǒng)計表繪出扇形統(tǒng)計圖,則武俠小說對應的圓心角是______;
(3)試估計該校1500名學生中有多少名同學最喜歡文學名著類書籍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標分別為A(0,4),B(﹣1,1),C(﹣2,2),將△ABC向右平移4個單位,得到△A′B′C′,點A,B,C的對應點分別為A′、B′、C′,再將△A′B′C′繞點B′順時針旋轉90°,得到△A″B″C″,點A′、B′、C′的對應點分別為A″、B″、C″,則點A″的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列請寫出下列幾何體,并將其分類.(只填寫編號)
如果按“柱”“錐”“球”來分,柱體有_____,椎體有_____,球有_____;
如果按“有無曲面”來分,有曲面的有_____,無曲面的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中(如圖每格一個單位),描出下列各點A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(xiàn)(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點連接起來,觀察所描出的圖形,它像什么?根據(jù)圖形回答下列問題:
(1)圖形中哪些點在坐標軸上,它們的坐標有什么特點?
(2)線段FD和x軸有什么位置關系?點F和點D的坐標有什么特點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com