【題目】某企業(yè)生產(chǎn)季節(jié)性產(chǎn)品,當(dāng)產(chǎn)品無利潤(rùn)時(shí),企業(yè)自動(dòng)停產(chǎn),經(jīng)過調(diào)研,它一年中每月獲得的利潤(rùn)y(萬元)和月份n之間滿足函數(shù)關(guān)系式y=﹣n2+12n﹣11,則企業(yè)停產(chǎn)的月份為( 。
A. 1月和11月 B. 1月、11月和12月 C. 1月 D. 1月至11月
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).
(Ⅰ)求拋物線的解析式和tan∠BAC的值;
(Ⅱ)在(Ⅰ)條件下:
(1)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)式子中,是一元一次方程的是( 。
A. 3+2=5 B. x=2 C. 3x-y=2 D. x2-2x-3=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列時(shí)刻中,時(shí)針與分針之間的夾角為300的是()
A. 早晨6點(diǎn) B. 下午13點(diǎn) C. 中午12點(diǎn) D. 上午9點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD 中,AB=3,BC=4,E,F 是對(duì)角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).
(1)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.
(2)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.
(3)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 E,F 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題共10分)水果批發(fā)市場(chǎng)有一種高檔水果,如果每千克盈利(毛利潤(rùn))10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷量將減少20千克.
(1)若以每千克能盈利18元的單價(jià)出售,問每天的總毛利潤(rùn)為多少元?
(2)現(xiàn)市場(chǎng)要保證每天總毛利潤(rùn)6000元,同時(shí)又要使顧客得到實(shí)惠,則每千克應(yīng)漲價(jià)多少元?
(3)現(xiàn)需按毛利潤(rùn)的10%交納各種稅費(fèi),人工費(fèi)每日按銷售量每千克支出0.9元,水電房租費(fèi)每日102元,若剩下的每天總純利潤(rùn)要達(dá)到5100元,則每千克漲價(jià)應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:①PM=PN;②;③△PMN為等邊三角形;④當(dāng)∠ABC=45°時(shí),BN=PC.其中正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點(diǎn)D沿BC自B向C運(yùn)動(dòng)(點(diǎn)D與點(diǎn)B、C不重合),作BE⊥AD于E,CF⊥AD于F,則BE+CF的值( )
A.不變 B.增大 C.減小 D.先變大再變小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com