【題目】已知一次函數(shù)y=kx+3﹣2k,A(﹣2,1),B(1,﹣3),C(﹣2,﹣3)
(1)說(shuō)明點(diǎn)M(2,3)在直線y=kx+3﹣2k上;
(2)當(dāng)直線y=kx+3﹣2k經(jīng)過(guò)點(diǎn)C時(shí),點(diǎn)P是直線y=kx+3﹣2上一點(diǎn),若S△BCP=2S△ABC,求點(diǎn)P的坐標(biāo).
【答案】(1)見(jiàn)解析;(2)點(diǎn)P的坐標(biāo)為(﹣,﹣11)或(,5)
【解析】
(1)將x=2代入y=kx+3-2k,求出y=3,由此即可證出點(diǎn)M(2,3)在直線y=kx+3-2上;
(2)根據(jù)點(diǎn)C的坐標(biāo)利用待定系數(shù)法求出此時(shí)直線的解析式,由此可設(shè)點(diǎn)P的坐標(biāo)為(m,m),再根據(jù)S△BCP=2S△ABC,即可得出關(guān)于m的含絕對(duì)值符號(hào)的一元一次方程,解方程求出m的值,將其代入P點(diǎn)坐標(biāo)即可得出結(jié)論.
(1)證明:∵y=kx+3﹣2k,
∴當(dāng)x=2時(shí),y=2k+3﹣2k=3,
∴點(diǎn)M(2,3)在直線y=kx+3﹣2k上;
(2)解:將點(diǎn)C(﹣2,﹣3)代入y=kx+3﹣2k,
得:﹣3=﹣2k+3﹣2k,解得:k=,
此時(shí)直線CM的解析式為y=x.
設(shè)點(diǎn)P的坐標(biāo)為(m,m).
∵S△BCP=BC|yP﹣yB|,S△ABC=BC|yA﹣yC|,S△BCP=2S△ABC,
∴|m﹣(﹣3)|=2×[1﹣(﹣3)],
解得:m1=﹣,m2=,
∴點(diǎn)P的坐標(biāo)為(﹣,﹣11)或(,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小飛設(shè)計(jì)的“過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖過(guò)程.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
作法:如圖,
①連接OP,作線段OP的垂直平分線交OP于點(diǎn)A;
②以點(diǎn)A為圓心,OA的長(zhǎng)為半徑作圓,交⊙O于B,C兩點(diǎn);
③作直線PB,PC.所以直線PB,PC就是所求作的切線.
根據(jù)小飛設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明(說(shuō)明:括號(hào)里填寫(xiě)推理的依據(jù)).
證明:連接,,
∵為⊙的直徑,
∴ ( ).
∴,.
∴,為⊙的切線( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)是以為直徑的上一點(diǎn),直線與過(guò)點(diǎn)的切線相交于,點(diǎn)是的中點(diǎn),直線交直線于點(diǎn).
(1)求證:是的切線;
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)會(huì)期間,甲、乙、丙三位同學(xué)參加乒乓球單打比賽,用抽簽的方式確定第一場(chǎng)比賽的人選.
(1)若已確定甲參加第一次比賽,求另一位選手恰好是乙同學(xué)的概率;
(2)用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出參加第一場(chǎng)比賽選手的所有可能,并求選中乙、丙兩位同學(xué)參加第一場(chǎng)比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為,,點(diǎn)M是AO中點(diǎn),的半徑為2.
若是直角三角形,則點(diǎn)P的坐標(biāo)為______直接寫(xiě)出結(jié)果
若,則BP與有怎樣的位置關(guān)系?為什么?
若點(diǎn)E的坐標(biāo)為,那么上是否存在一點(diǎn)P,使最小,如果存在,求出這個(gè)最小值,如果不存在,簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC 中,點(diǎn) D 是線段 BC 上一點(diǎn).作射線 AD ,點(diǎn) B 關(guān)于射線 AD 的對(duì)稱(chēng)點(diǎn)為 E .連接 EC 并延長(zhǎng),交射線 AD 于點(diǎn) F .
(1)補(bǔ)全圖形;(2)求∠AFE 的度數(shù);(3)用等式表示線段 AF 、CF 、 EF 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)y=(k2≠0)的圖象交于A(-1,-4)和點(diǎn)B(4,m)
(1)求這兩個(gè)函數(shù)的解析式;
(2)已知直線AB交y軸于點(diǎn)C,點(diǎn)P(n,0)在x軸的負(fù)半軸上,若△BCP為等腰三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某煤礦發(fā)生瓦斯爆炸,該地救援隊(duì)立即趕赴現(xiàn)場(chǎng)進(jìn)行救援,救援隊(duì)利用生命探測(cè)儀在地面A,B兩個(gè)探測(cè)點(diǎn)探測(cè)到C處有生命跡象.已知A,B兩點(diǎn)相距6米,探測(cè)線與地面的夾角分別是30°和45°,試確定生命所在點(diǎn)C的深度.(精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說(shuō)法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當(dāng)x>1時(shí),y隨x的增大而增大,正確的是( )
A. ①③B. ②④C. ①②④D. ②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com