【題目】已知拋物線經(jīng)過點,且拋物線上任意不同兩點都滿足:當時,;當時,;拋物線與軸另一個交點為,與軸交于點,對稱軸與軸交于點.
(1)求拋物線的對稱軸及點的坐標;
(2)過點作軸的平行線交拋物線的對稱軸于點,當四邊形是正方形時,求拋物線的解析式;
(3)在(2)的條件下,垂直于軸的直線與拋物線交于點和,與直線交于點,若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
【答案】(1)對稱軸為直線;(2);(3).
【解析】
(1)根據(jù)當拋物線上的點橫坐標小于-2時,縱坐標隨橫坐標增大而減小,當橫坐標大于-2時,縱坐標隨橫坐標增大而增大,可求得拋物線的對稱軸和A點坐標;
(2)由四邊形OCME是正方形得點C 坐標,設拋物線的解析式為,代入求出a的值即可得出拋物線解析式;
(3)根據(jù)題意結(jié)合圖象得出,再計算出,即可得出結(jié)論.
(1)由題意知,當拋物線上的點橫坐標小于-2時,縱坐標隨橫坐標增大而減小,當橫坐標大于-2時,縱坐標隨橫坐標增大而增大,
∴對稱軸為直線;
(2)根據(jù)題意,畫出草圖如解圖,設拋物線的解析式為,
∵四邊形OCME是正方形,
,
將C點坐標代入拋物線解析式,解得,
(3).
結(jié)合圖象可知,要滿足,則.
由題意得,點P與點Q關于直線對稱,
.
,
∴N點處于線段AC上且不包含點A和點C,
,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0).P為該拋物線上一動點,設點P的橫坐標為m.
(1)求拋物線的解析式.
(2)將該拋物線沿y軸向下平移AB個單位長度,點P的對應點為P′,若OP=OP′,求△OP P′的面積.
(3)如圖2,連接AP,BP,設△APB的面積為S,當-2≤m≤2時,直接寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年5月13日,大國重器﹣﹣中國第一艘國產(chǎn)航母正式海試,某校團支部為了了解同學們對此事的知曉情況,隨機抽取了部分同學進行調(diào)查,并根據(jù)收集到的信息繪制了如下兩幅不完整的統(tǒng)計圖,圖中A表示“知道得很詳細”,B表示“知道個大概”,C表示“聽說了”,D表示“完全不知道”,請根據(jù)途中提供的信息完成下列問題:
(1)扇形統(tǒng)計圖中A對應的圓心角是 度,并補全折線統(tǒng)計圖.
(2)被抽取的同學中有4位同學都是班級的信息員,其中有一位信息員屬于D類,校團支部從這4位信息員中隨機選出兩位作為校廣播站某訪談節(jié)目的嘉賓,請用列表法或畫樹狀圖法,求出屬于D類的信息員被選為的嘉賓的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,.
(1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經(jīng)過點;③與邊相切.
(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形OABC的一個頂點B的坐標是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過矩形的對稱中點E,且與邊BC交于點D,若過點D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,則此直線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知矩形中,是邊上的一個動點,點,,分別是,,的中點.
(1)求證:;
(2)當是的中點時,四邊形是什么樣的特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y = ax2 ax + c圖象的頂點為C,一次函數(shù)y = x + 3的圖象與這個二次函數(shù)的圖象交于A、B兩點(其中點A在點B的左側(cè)),與它的對稱軸交于點D.
(1)求點D的坐標;
(2) ①若點C與點D關于x軸對稱,且△BCD的面積等于4,求此二次函數(shù)的關系式;
②若CD=DB,且△BCD的面積等于4,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com