如圖,矩形紙片ABCD中,AB=5cm,BC=10cm,E、P分別為CD、DA邊上的點,ED=2cm,PD=3cm, PF⊥AD,折疊紙片,使P點與E點重合,折痕與PF交于Q點,則PQ的長是____________cm.
過Q點作QG⊥CD,垂足為G點,連接QE,設(shè)PQ=x,根據(jù)折疊及矩形的性質(zhì),用含x的式子表示Rt△EGQ的三邊,再用勾股定理列方程求x即可.
解:過Q點作QG⊥CD,垂足為G點,連接QE,
設(shè)PQ=x,由折疊及矩形的性質(zhì)可知,
EQ=PQ=x,QG=PD=3,EG=DG-DE=PQ-DE=x-2,
在Rt△EGQ中,由勾股定理得
EG2+GQ2=EQ2,即:(x-2)2+32=x2
解得:x=,即PQ=
故答案為:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

平行四邊形ABCD中,∠A、∠B、∠C、∠D的度數(shù)之比有可能是(  )
A、1∶2∶3∶4  B、2∶2∶3∶3  C、2∶3∶2∶3  D、2∶3∶3∶2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分7分)如圖,四邊形ABCD是菱形,點GBC延長線上一點,連接AG,分別交BD、CD于點E、F,連接CE

(1)求證:∠DAE=∠DCE
(2)當(dāng)AE=2EF時,判斷FGEF有何等量關(guān)系?并證明你的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分).證明:等腰梯形的兩條對角線相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于ABCD,下列結(jié)論不正確的是(    )
A.AB=CDB.AC="BD"
C.∠B=∠DD.當(dāng)∠ABC=90°時,它是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料并解答問題
如圖①,以Rt△ABC的直角邊AB、AC為邊分別向外作正方形ABDE和正方形ACFG,連結(jié)EG,可以得出結(jié)論△ABC的面積與△AEG的面積相等.
(1)在圖①中的△ABC的直角邊AB上任取一點H,連結(jié)CH,以BH、HC為邊分別向外作正方形HBDE和正方形HCFG,連結(jié)EG,得到圖②,則△HBC的面積與△HEG的面積的大小關(guān)系為   .
(2)如圖③,若圖形總面積是a,其中五個正方形的面積和是b,則圖中陰影部分的面積是   .
(3)如圖④,點A、B、C、D、E都在同一直線上,四邊形X、Y、Z都是正方形,若圖形總面積是m,正方形Y的面積是n,則圖中陰影部分的面積是   .
  
圖①             圖②                       圖③                      圖④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形的周長是20cm,兩條對角線的長度之比是3:4,則菱形的面積為       ___________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一個無蓋正方體紙盒展開(如圖①),沿虛線剪開,        
用得到的5張紙片(其中4張是全等的直角三角形紙片)
拼成一個正方形(如圖②),則所剪得的直角三角形較
短的與較長的直角邊的比是
A.3:4B.2:3 C.1:3 D.1:2
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,BE⊥DC于E,BC=5,AD:BC=2:5.求ED的長.

查看答案和解析>>

同步練習(xí)冊答案