【題目】作圖題:如圖,在平面內(nèi)有不共線的3個點,,,.
(1)作射線,在延長線上取一點,使;
(2)作線段并延長到點,使;
(3)連接,;
(4)度量線段和的長度,直接寫出二者之間的數(shù)量關(guān)系,觀察和的位置是(填“平行”或“相交”)關(guān)系;
(5)作的中點,連接,猜想 (填“”,“”或“”)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解高中學(xué)生每月用掉中性筆筆芯的情況,隨機抽查了30名高中學(xué)生進行調(diào)查,并將調(diào)查的數(shù)據(jù)制成如下的表格:
月平均用中性筆筆芯(根) | 4 | 5 | 6 | 7 | 8 | 9 |
被調(diào)查的學(xué)生數(shù) | 7 | 4 | 9 | 5 | 2 | 3 |
請根據(jù)以上信息,解答下列問題:
(1)被調(diào)查的學(xué)生月平均用中性筆筆芯數(shù)大約________根;
(2)被調(diào)查的學(xué)生月用中性筆筆芯數(shù)的中位數(shù)為________根,眾數(shù)為________根;
(3)根據(jù)樣本數(shù)據(jù),若被調(diào)查的高中共有1000名學(xué)生,試估計該校月平均用中性筆筆芯數(shù)9根的約多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點E作EG⊥AC于G,交BC的延長線于F.
(1)求證:FE是⊙O的切線;
(2)若FE=4,FC=2,求⊙O的半徑及CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當(dāng)∠BAC=Rt∠時,求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過點,,與軸正半軸交于點,與軸交于點.
(1)求直線的解析式;
(2)設(shè)點為直線下方拋物線上一點,連接、,當(dāng)面積最大時,求點的坐標(biāo);
(3)在(2)的條件下,直線過直線與軸的交點.設(shè)的中點為,是直線上一點,是直線上一點,求周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團課程,為了解部分社團課程在學(xué)生中最受歡迎的程度,學(xué)校隨機抽取七年級部分學(xué)生進行調(diào)查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選出你喜歡的課程(被調(diào)查者限選一項),并將調(diào)查結(jié)果繪制成兩個不完整的統(tǒng)計圖,如圖所示,根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為多少人,扇形統(tǒng)計圖中A部分的圓心角是多少度.
(2)請補全條形統(tǒng)計圖.
(3)根據(jù)本次調(diào)查,該校七年級840名學(xué)生中,估計最喜歡“科學(xué)探究”的學(xué)生人數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段
(1)如圖1,點沿線段自點向點以的速度運動,同時點沿線段點向點以的速度運動,幾秒鐘后,兩點相遇?
(2)如圖1,幾秒后,點兩點相距?
(3)如圖2,,,當(dāng)點在的上方,且時,點繞著點以30度/秒的速度在圓周上逆時針旋轉(zhuǎn)一周停止,同時點沿直線自點向點運動,假若點兩點能相遇,求點的運動速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com