【題目】已知二次函數(shù)f(x)=ax2+bx+c和一次函數(shù)g(x)=﹣bx,其中a、b、c,滿足a>b>c,a+b+c=0.
(1)求證:這兩個函數(shù)的圖象交于不同的兩點;
(2)設(shè)這兩個函數(shù)的圖象交于A,B兩點,作AA1⊥x軸于A1,BB1⊥x軸于B1,求線段A1B1的長的取值范圍.
【答案】(1)見解析;(2)<A1B1<2.
【解析】
(1)把兩個函數(shù)聯(lián)立成方程組,轉(zhuǎn)化為解一元二次方程,用根的判別式求解即可;
(2)A1B12=(x1﹣x2)2=(x1+x2)2﹣4x1x2,用根與系數(shù)的關(guān)系轉(zhuǎn)化為含a、b、c的式子,再配方求解.
(1)證明:聯(lián)立方程得:ax2+2bx+c=0,
△=4(b2-ac),
∵a>b>c,a+b+c=0,
∴a>0,c<0,
∴ac<0,
∴△>0,
∴兩函數(shù)的圖象相交于不同的兩點;
(2)解:設(shè)方程ax2+2bx+c=0的兩根為x1,x2,則
A1B12=(x1﹣x2)2=(x1+x2)2﹣4x1x2,
=(﹣)2﹣==,
=4[()2++1],
=4[()2+],
∵a>b>c,a+b+c=0,
∴b=﹣(a+c),
∴a>﹣(a+c)>c,a>0,
∴﹣2<<﹣,
此時3<A1B12<12,
∴<A1B1<2.
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一種商品,經(jīng)市場調(diào)査發(fā)現(xiàn),該商品的周銷售量y(件)是售價x(元/件)的一次函數(shù).其售價、周銷售量、周銷售利潤w(元)的三組對應(yīng)值如表:
售價x(元/件) | 50 | 60 | 80 |
周銷售量y(件) | 100 | 80 | 40 |
周銷售利潤w(元) | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價﹣進價)
(1)求y關(guān)于x的函數(shù)解析式_____;
(2)當售價是_____元/件時,周銷售利潤最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A1,A2,A3是拋物線y=x2+1(x>0)上的三點,且A1,A2,A3三點的橫坐標為連續(xù)的整數(shù),連接A1A3,過A2作A2Q⊥x軸于點Q,交A1A3于點P,則線段PA2的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運動,速度為2cm/s.當一個點到達終點時,另一個點隨之停止運動。設(shè)點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖①,P是⊙O外的一點,直線PO分別交⊙O于點A、B,可以發(fā)現(xiàn)PA是點P到⊙O上的點的最短距離.
(1)直接運用:如圖②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是弧CD上的一個動點,連接AP,則AP的最小值是 .
(2)構(gòu)造運用:如圖③,在邊長為8的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,請求出A′C長度的最小值.
(3)綜合運用:如圖④,平面直角坐標系中,分別以點A(﹣2,3),B(3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動點,P為x軸上的動點,則PM+PN的最小值等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為倡導“低碳生活”,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2
圖1 圖2
(1)求車座點E到地面的距離;(結(jié)果精確到1cm)
(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com