【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數(shù)式表示線段MN的長;

(3)當AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設拋物線C1y軸交于點P,點My軸右側的拋物線C2上,連接AMy軸于點k,連接KN,在平面內有一點Q,連接KQQN,當KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標.

【答案】(1)拋物線C1:解析式為y=x2+x﹣1;(2)MN=t2+2;(3)t的值為10;(4)滿足條件的Q點坐標為:(0,2)、(﹣1,3)、(,)、(

【解析】1)利用待定系數(shù)法進行求解即可;

(2)把x=t代入函數(shù)關系式相減即可得;

(3)根據圖形分別討論∠ANM=90°、AMN=90°時的情況即可得;

(4)根據題意畫出滿足條件圖形,可以找到ANKNP對稱軸,由對稱性找到第一個滿足條件Q,再通過延長和圓的對稱性找到剩余三個點,利用勾股定理進行計算.

1)∵拋物線C1:y=ax2+bx﹣1經過點A(﹣2,1)和點B(﹣1,﹣1),

,解得:,

∴拋物線C1:解析式為y=x2+x﹣1;

(2)∵動直線x=t與拋物線C1交于點N,與拋物線C2交于點M,

∴點N的縱坐標為t2+t﹣1,點M的縱坐標為2t2+t+1,

MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;

(3)共分兩種情況

①當∠ANM=90°,AN=MN時,由已知N(t,t2+t﹣1),A(﹣2,1),

AN=t﹣(﹣2)=t+2,

MN=t2+2,

t2+2=t+2,

t1=0(舍去),t2=1,

t=1;

②當∠AMN=90°,AN=MN時,由已知M(t,2t2+t+1),A(﹣2,1),

AM=t﹣(﹣2)=t+2,

MN=t2+2,

t2+2=t+2,

t1=0,t2=1(舍去)

t=0,

t的值為10;

(4)由(3)可知t=1M位于y軸右側,根據題意畫出示意圖如圖:

易得K(0,3),B、O、N三點共線

A(﹣2,1),N(1,1),P(0,﹣1),

∴點K、P關于直線AN對稱,

設⊙Ky軸下方交點為Q2,則其坐標為(0,2),

Q2與點O關于直線AN對稱

Q2是滿足條件∠KNQ=BNP,

NQ2延長線與⊙K交點Q1,Q1、Q2關于KN的對稱點Q3、Q4也滿足∠KNQ=BNP,

由圖形易得Q1(﹣1,3),

設點Q3坐標為(a,b),由對稱性可知Q3N=NQ1=BN=2,

由∵⊙K半徑為1,

,解得,

同理,設點Q4坐標為(a,b),由對稱性可知Q4N=NQ2=NO=

解得,,

∴滿足條件的Q點坐標為:(0,2)、(﹣1,3)、(,)、(,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解學生的課外閱讀情況,對部分學生進行了調查,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據繪制如下兩幅不完整的統(tǒng)計圖.

請你根據以上信息解答下列問題:

1)本次調查活動采取了   調查方式,樣本容量是 

2)圖2C的圓心角度數(shù)為  度,補全圖1的頻數(shù)分布直方圖.

3)該校有900名學生,估計該校學生平均每天的課外閱讀時間不少于50min的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,直線a∥b,頂點C在直線b上,直線aAB于點D,交AC于點E,若∠1=145°,則∠2的度數(shù)是( )

A.30°B.35°C.40°D.45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第 n個圖形需要黑色棋子的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BEO的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l1:y=(k﹣1)x+k+1和直線l2:y=kx+k+2,其中k為不小于2的自然數(shù).

(1)當k=2時,直線l1、l2x軸圍成的三角形的面積S2=______;

(2)當k=2、3、4,……,2018時,設直線l1、l2x軸圍成的三角形的面積分別為S2,S3,S4,……,S2018,則S2+S3+S4+……+S2018=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+cx軸于A、B兩點,交y軸于點C(0,﹣),OA=1,OB=4,直線l過點A,交y軸于點D,交拋物線于點E,且滿足tanOAD=

(1)求拋物線的解析式;

(2)動點P從點B出發(fā),沿x軸正方形以每秒2個單位長度的速度向點A運動,動點Q從點A出發(fā),沿射線AE以每秒1個單位長度的速度向點E運動,當點P運動到點A時,點Q也停止運動,設運動時間為t秒.

①在P、Q的運動過程中,是否存在某一時刻t,使得ADCPQA相似,若存在,求出t的值;若不存在,請說明理由.

②在P、Q的運動過程中,是否存在某一時刻t,使得APQCAQ的面積之和最大?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,

1)求點C到直線AB的距離;

2求海警船到達事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知海島A的周圍6km的范圍內有暗礁,一艘海輪在B處測得海島A在北偏東30°的方向;向正北方向航行6km到達C處,又測得該島在北偏東60°的方向,如果海輪不改變航向,繼續(xù)向正北航行,有沒有觸礁的危險?

查看答案和解析>>

同步練習冊答案