【題目】如圖已知點(diǎn)A (﹣2,4)和點(diǎn)B (1,0)都在拋物線y=mx2+2mx+n上.

(1)求m、n;

(2)向右平移上述拋物線,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達(dá)式;

(3)記平移后拋物線的對稱軸與直線AB′的交點(diǎn)為點(diǎn)C,試在x軸上找點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.

【答案】(1)m=﹣,n=4 (2)y=﹣(x﹣4)2+ (3)D(3,0)或(,0).

【解析】(1)已知了拋物線圖象上A、B兩點(diǎn)的坐標(biāo),將它們代入拋物線的解析式中,即可求得m、n的值.

(2)根據(jù)A、B的坐標(biāo),易求得AB的長;根據(jù)平移的性質(zhì)知:四邊形AA′B′B一定為平行四邊形,若四邊形AA′B′B為菱形,那么必須滿足AB=BB′,由此可確定平移的距離,根據(jù)“左加右減”的平移規(guī)律即可求得平移后的拋物線解析式.

(3)易求得直線AB′的解析式,聯(lián)立平移后的拋物線對稱軸,可得到C點(diǎn)的坐標(biāo),進(jìn)而可求出AB、BC、AC、B′C的長;在(2)題中已經(jīng)證得AB=BB′,那么∠BAC=∠BB′C,即A、B′對應(yīng),若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,可分兩種情況考慮:①∠B′CD=∠ABC,此時(shí)△B′CD∽△ABC,②∠B′DC=∠ABC,此時(shí)△B′DC∽△ABC;

根據(jù)上述兩種不同的相似三角形所得不同的比例線段,即可求得不同的BD長,進(jìn)而可求得D點(diǎn)的坐標(biāo).

解:(1)由于拋物線經(jīng)過A (﹣2,4)和點(diǎn)B (1,0),則有:

,解得

故m=﹣,n=4.

(2)由(1)得:y=﹣x2x+4=﹣(x+1)2+;

由A (﹣2,4)、B (1,0),可得AB==5;

若四邊形A A′B′B為菱形,則AB=BB′=5,即B′(6,0);

故拋物線需向右平移5個(gè)單位,即:

y=﹣(x+1﹣5)2+=﹣(x﹣4)2+

(3)由(2)得:平移后拋物線的對稱軸為:x=4;

∵A(﹣2,4),B′(6,0),

∴直線AB′:y=﹣x+3;

當(dāng)x=4時(shí),y=1,故C(4,1);

所以:AC=3,B′C=,BC=

由(2)知:AB=BB′=5,即∠BAC=∠BB′C;

若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,則:

①∠B′CD=∠ABC,則△B′CD∽△ABC,可得:

=,即=,B′D=3,

此時(shí)D(3,0);

②∠B′DC=∠ABC,則△B′DC∽△ABC,可得:

=,即=,B′D=

此時(shí)D(,0);

綜上所述,存在符合條件的D點(diǎn),且坐標(biāo)為:D(3,0)或(,0).

“點(diǎn)睛”此題考查了二次函數(shù)解析式的確定、函數(shù)圖象的平移、菱形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí);(3)題中,在相似三角形的對應(yīng)角和對應(yīng)邊不確定的情況下,一定要分類討論,以免漏解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P,Q兩點(diǎn)給出如下定義:若點(diǎn)Px,y軸的距離中的最大值等于點(diǎn)Qxy軸的距離中的最大值,則稱PQ兩點(diǎn)為等距點(diǎn)圖中的P,Q兩點(diǎn)即為等距點(diǎn)”.

1)已知點(diǎn)A的坐標(biāo)為.①在點(diǎn)中,為點(diǎn)A等距點(diǎn)的是________;②若點(diǎn)B的坐標(biāo)為,且A,B兩點(diǎn)為等距點(diǎn),則點(diǎn)B的坐標(biāo)為________.

2)若兩點(diǎn)為等距點(diǎn),求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關(guān)部門的規(guī)定,∠α≤39°時(shí),才能避免滑坡危險(xiǎn),學(xué)校為了消除安全隱患,決定對斜坡CD進(jìn)行改造,在保持坡腳C不動(dòng)的情況下,學(xué)校至少要把坡頂D向后水平移動(dòng)多少米才能保證教學(xué)樓的安全?(結(jié)果取整數(shù))

(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,線段AD=10cm,點(diǎn)B,C都是線段AD上的點(diǎn),且AC=7cmBD=4cm,若E,F分別是線段AB,CD的中點(diǎn),求BCEF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】供電局的電力維修工要到30千米遠(yuǎn)的郊區(qū)進(jìn)行電力搶修.技術(shù)工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時(shí)到達(dá).已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個(gè)多邊形就叫做正多邊形.如圖,就是一組正多邊形,觀察每個(gè)正多邊形中∠α的變化情況,解答下列問題:

1)將下面的表格補(bǔ)充完整:

正多邊形邊數(shù)

3

4

5

6

n

α的度數(shù)

60°

45°

   

   

   

2)根據(jù)規(guī)律,是否存在一個(gè)正多邊形,其中的∠α21°?若存在,請求出n的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MAN=120°,AC平分∠MAN

1)在圖1中,若∠ABC=ADC=90°,求證:AB+AD=AC

2)在圖2中,若∠ABC+ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC

1)若AB=4AC=5,則BC邊的取值范圍是  

2)點(diǎn)DBC延長線上一點(diǎn),過點(diǎn)DDE∥AC,交BA的延長線于點(diǎn)E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩根木條,一根AB長為100cm,另一根CD長為150cm,在它們的中點(diǎn)處各有一個(gè)小圓孔MN(圓孔直徑忽略不計(jì),MN抽象成兩個(gè)點(diǎn)),將它們的一端重合,放置在同一條直線上,此時(shí)兩根木條的小圓孔之間的距離MN____________cm.

查看答案和解析>>

同步練習(xí)冊答案