【題目】某超市預測某飲料有發(fā)展前途,用2000元購進一批飲料,面市后果然供不應(yīng)求,又用5000元購進這批飲料,第二批飲料的數(shù)量是第一批的2倍,但進貨單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少2000元,那么銷售單價至少為多少元?
【答案】(1)第一批飲料進貨單價8元(2)銷售單價至少為12元.
【解析】
(1)設(shè)第一批飲料進貨單價x元,則第二批的單價為(x+2)元,根據(jù)第二批飲料的數(shù)量是第一批的2倍即可列出方程進行求解;(2)設(shè)售價為m元,根據(jù)兩批全部售完后,獲利不少2000元得到不等式,即可列出不等式求出答案.
(1)設(shè)第一批飲料進貨單價x元,則第二批的單價為(x+2)元,
依題意得
解得x=8
經(jīng)檢驗,x=8是原方程的解,
故第一批飲料進貨單價8元
(2)第一次購買=250件,第二次購買500件
設(shè)售價為m元
則250(m-8)+500(m-10)≥2000
解得m≥12,
故銷售單價至少為12元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=BC=CD=AD=4,∠DAB=∠B=∠C=∠D=90°,E,F分別是邊BC,CD上的點,且CE=BC,F為CD的中點,問△AEF是什么三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,是直線上一點,以為一邊在的右側(cè)作,使,,連接.設(shè),.
(1)如圖(1),點在線段上移動時,試說明;
(2)如圖(2),點在線段的延長線上移動時,探索角與之間的數(shù)量關(guān)系并證明;
(3)當點在線段的反向延長線上移動時,請在備用圖上根據(jù)題意畫出圖形,并猜想角與之間的數(shù)量關(guān)系是______________,線段、、之間的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線AB與x軸、y軸的交點分別為A、,將對折,使點O的對應(yīng)點H恰好落在直線AB上,折痕交x軸于點C,
求過A、B、C三點的拋物線解析式;
若拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標;若不存在,說明理由;
若點Q是拋物線上一個動點,使得以A、B、Q為頂點并且以AB為直角邊的直角三角形,直接寫出Q點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一天,王亮同學從家里跑步到體育館,在那里鍛煉了一陣后又走到某書店去買書, 然后散步走回家如圖反映的是在這一過程中,王亮同學離家的距離 s(千米)與離家的時間 t(分鐘)之間的關(guān)系,請根據(jù)圖象解答下列問題:
(1)體育館離家的距離為 千米,書店離家的距離為_____千米;王亮同學在書店待了______分鐘.
(2)分別求王亮同學從體育館走到書店的平均速度和從書店出來散步回家的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,一只螞蟻從A點出發(fā),沿著A-B-C-D-A…循環(huán)爬行,其中A點坐標為(1,-1),B點坐標為(-1,-1),C點坐標為(-1,3),D點坐標為(1,3),當螞蟻爬了2 018個單位長度時,它所處位置的坐標為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(2,4),點B的坐標為(3,0).三角形AOB中任意一點P(x0,y0)經(jīng)平移后的對應(yīng)點為P1(x0+2,y0),并且點A,O,B的對應(yīng)點分別為點D,E,F(xiàn).
(1)指出平移的方向和距離;
(2)畫出平移后的三角形DEF;
(3)求線段OA在平移過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CE是圓O的直徑,點B在圓O上由點E順時針向點C運動(點B不與點E、C重合),弦BD交CE于點F,且BD=BC,過點B作弦CD的平行線與CE的延長線交于點A.
(1)若圓O的半徑為2,且點D為弧EC的中點時,求圓心O到弦CD的距離;
(2)當DFDB=CD2時,求∠CBD的大小;
(3)若AB=2AE,且CD=12,求△BCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com