【題目】如圖,斜面AC的坡度(CD與AD的比)為1:2,AC=3 米,坡頂有旗桿BC , 旗桿頂端B點(diǎn)與A點(diǎn)有一條彩帶相連 . 若AB=10米,則旗桿BC的高度為( 。

A.5米
B.6米
C.8米
D.(3+ )米

【答案】A
【解析】設(shè)CD=x , 則AD=2x ,
由勾股定理可得,AC=
∵AC=3 米,
x=3 ,
∴x=3米,
∴CD=3米,
∴AD=2×3=6米,
在Rt△ABD中,BD= =8米,
∴BC=8-3=5米 .
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解關(guān)于坡度坡角問題的相關(guān)知識,掌握坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC中,∠CAB=90°,AC=AB,點(diǎn)D、EBC上的兩點(diǎn),且∠DAE=45°,ADCADF關(guān)于直線AD對稱.

(1)求證:AEF≌△AEB;

(2)DFE=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點(diǎn)作一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn)D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景

在△ABC中,AB,BC,AC的長分別為,,,求這個(gè)三角形的面積.曉輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)三角形ABC(即△ABC的三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

(1)請你直接寫出△ABC的面積:________.

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC的三邊長分別為a,2a,a(a>0),請利用圖②的正方形網(wǎng)格(每個(gè)小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

探索創(chuàng)新

(3)若△ABC的三邊長分別為,,2 (m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法(自己重新設(shè)計(jì)一個(gè)符合結(jié)構(gòu)特征的網(wǎng)格)求出這個(gè)三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小敏同學(xué)想測量一棵大樹的高度她站在B處仰望樹頂,測得仰角為30°,再往大樹的方向前進(jìn)4m , 測得仰角為60°,已知小敏同學(xué)身高(AB)為1.6m , 則這棵樹的高度為( 。ńY(jié)果精確到0.1m , ≈1.73)

A.3.5m
B.3.6m
C.4.3m
D.5.1m
.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC.BD相交于點(diǎn)O , 過點(diǎn)OOEACADE , 若AB=6,AD=8,求sinOEA的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ACB中,∠ACB=90゜,CDAB于D.

(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CD、BCE、F , 求證:∠CEF=∠CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB=1,在BC上取一點(diǎn)E , 沿AE將△ABE向上折疊,使B點(diǎn)落在AD上的F點(diǎn),若四邊形EFDC與矩形ABCD相似,則AD=( 。.

A.
B.
C.
D.2

查看答案和解析>>

同步練習(xí)冊答案