【題目】如圖所示:在平面直角坐標(biāo)系中,OCB的外接圓與y軸交于A(0,),OCB=60°COB=45°,則OC=

【答案】1+

【解析】

試題分析:連接AB,由圓周角定理知AB必過圓心M,RtABO中,易知BAO=OCB=60°,已知了OA=,即可求得OB的長;

過B作BDOC,通過解直角三角形即可求得OD、BD、CD的長,進(jìn)而由OC=OD+CD求出OC的長.

解:連接AB,則AB為M的直徑.

RtABO中,BAO=OCB=60°,

OB=OA=×=

過B作BDOC于D.

RtOBD中,COB=45°,

則OD=BD=OB=

RtBCD中,OCB=60°,

則CD=BD=1.

OC=CD+OD=1+

故答案為:1+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a∥b,直線ca、b都相交,從所標(biāo)識的∠1、∠2、∠3、∠4∠5這五個(gè)角中任意選取兩個(gè)角,則所選取的兩個(gè)角互為補(bǔ)角的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形OABC構(gòu)成,長方形的長OA12m,寬OC4m.按照圖中所示的平面直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示.在拋物線型拱璧上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m.那么兩排燈的水平距離最小是(  )

A.2mB.4mC.mD.m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象經(jīng)過點(diǎn)A(10)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:

①二次函數(shù)yax2+bx+c的最小值為﹣4a;

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2y1,則x24

④一元二次方程cx2+bx+a0的兩個(gè)根為﹣1

其中正確結(jié)論的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖數(shù)軸的A、BC三點(diǎn)所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)OAB的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。

A. A的左邊 B. 介于A、B之間 C. 介于BC之間 D. C的右邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,ACBD相交于點(diǎn)E,且DC2CECA

1)求證:BCCD;

2)分別延長ABDC交于點(diǎn)P,若PBOB,CD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,以AC為直徑的⊙OAB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CEAB于點(diǎn)F,且BF=BC

1)求證:BC是⊙O的切線;

2)若⊙O的半徑為2,=,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小翔在如圖1所示的場地上勻速跑步,他從點(diǎn)A出發(fā),沿箭頭所示方向經(jīng)過點(diǎn)B跑到點(diǎn)C,共用時(shí)30秒.他的教練選擇了一個(gè)固定的位置觀察小翔的跑步過程.設(shè)小翔跑步的時(shí)間為t(單位:秒),他與教練的距離為y(單位:米),表示yt的函數(shù)關(guān)系的圖象大致如圖2所示,則這個(gè)固定位置可能是圖1中的( )

A. 點(diǎn)M B. 點(diǎn)N C. 點(diǎn)P D. 點(diǎn)Q

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水費(fèi)采用階梯收費(fèi)制度,即:每月用水不超過15噸時(shí),每噸需繳納水費(fèi)a元,每月用水量超過15噸時(shí),超過15噸的部分按每噸提高b元繳納下表是嘉琪家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)據(jù),回答:

月份

月用水量(噸)

14

18

16

13

水費(fèi)(元)

42

60

50

39

1a   元;b   元;

2)求月繳納水費(fèi)p(元)與月用水量t(噸)之間的函數(shù)關(guān)系式;

3)若嘉琪家五月和六月的月繳水費(fèi)相差24元,求這兩月用水量差的最小值.

查看答案和解析>>

同步練習(xí)冊答案