【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、F,AE、BF 相交于點 M

(1)求證:AEBF;

(2)判斷線段 DF CE 的大小關(guān)系,并予以證明.

【答案】(1)詳見解析;(2)DFCE,證明詳見解析.

【解析】

試題(1)只要證明∠MAB+MBA=90°即可;

2)結(jié)論:DF=CE.只要證明AD=DE,CF=BC,可得DE=CF即可解決問題;

1)證明:∵AE、BF分別平分∠DAB和∠ABC,

∴∠EAB=DAB,∠ABF=ABC,

∵四邊形ABCD是平行四邊形∴∠DAB+ABC=180°,

∴∠EAB+ABF=×180°=90°,

AEBF

2DF=CE

證明:∵AE平分∠DAB∴∠EAB=EAD,

DCAB,

∴∠EAD=EAD,

AD=DE,

同理:FC=BC,

∵四邊形ABCD是平行四邊形,

AD=BC,

DE=FC

DF=CE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后.點D與點B重合,點C落在點C′的位置上.若∠1=60°,AE=1

1)求∠2、∠3的度數(shù);

2)求長方形紙片ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:課外興趣小組活動時,老師提出了如下問題:

如圖1,ABC中,若AB=5AC=3,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長ADE,使得DE=AD,再連接BE(或?qū)?/span>ACD繞點D逆時針旋轉(zhuǎn)180°得到EBD),把ABAC、2AD集中在ABE中,利用三角形的三邊關(guān)系可得2AE8,則1AD4

感悟:解題時,條件中若出現(xiàn)中點”“中線字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

1)問題解決:受到(1)的啟發(fā),請你證明下面命題:如圖2,在ABC中,DBC邊上的中點,DEDF,DEAB于點E,DFAC于點F,連接EF

①求證:BE+CFEF;②若∠A=90°,探索線段BE、CFEF之間的等量關(guān)系,并加以證明;

2)問題拓展:如圖3,在平行四邊形ABCD中,AD=2AB,FAD的中點,作CEAB,垂足E在線段AB上,聯(lián)結(jié)EF、CF,那么下列結(jié)論①∠DCF=BCD;EF=CFSBEC=2SCEF;④∠DFE=3AEF.中一定成立是 (填序號).

圖1 圖2 圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一RtABC,∠C90°A(1,3)、B(3,-1)、C(3,3),已知A1AC1是由ABC旋轉(zhuǎn)得到的.若點Qx軸上,點P在直線AB上,要使以Q、PA1、C1為頂點的四邊形是平行四邊形,滿足條件的點Q的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=3x+1向下平移1個單位長度,得到直線y=3x +m,若反比例函數(shù)的圖象與直線y=3x+m相交于點A,且點A 的縱坐標(biāo)是3.

(1)mk的值;

(2) 直接寫出方程的解:

(3) 結(jié)合圖象求不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:

2)已知關(guān)于的方程 的解是正數(shù),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

已知:如圖,四邊形ABCD中,∠A=106°, ∠ABC=74°,BD⊥DC于點D, EF⊥DC于點F.

求證:∠1=∠2.

證明: ∵∠A=106°,∠ABC=74° (已知)

∴∠A+∠ABC=180°

( )

∴∠1=

∵BD⊥DC,EF⊥DC (已知)

∴∠BDF=∠EFC=90°( )

∴BD∥ ( )

∴∠2= ( )

(已證)

∴∠1=∠2 ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的邊ABx軸上,AB的中點與原點O重合,AB2AD1,點Q的坐標(biāo)為(02).點Px,0)在邊AB上運動,若過點Q、P的直線將矩形ABCD的周長分成21兩部分,則x的值為(  )

A. -B. -C. -D. -

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮昌公司要將本公司100噸貨物運往某地銷售,經(jīng)與春晨運輸公司協(xié)商,計劃租用甲、乙兩種型號的汽車共6輛,用這6輛汽車一次將貨物全部運走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費用2500元;租用2輛甲型汽車和1輛乙型汽車共需費用2450元,且同一種型號汽車每輛租車費用相同.

(1)求租用一輛甲型汽車、一輛乙型汽車的費用分別是多少元?

(2)若榮昌公司計劃此次租車費用不超過5000元.通過計算求出該公司有幾種租車方案?請你設(shè)計出來,并求出最低的租車費用.

查看答案和解析>>

同步練習(xí)冊答案