【題目】如圖,在ABCD中,BE交對角線AC于點(diǎn)E,DF∥BE交AC于點(diǎn)F.
(1)寫出圖中所有的全等三角形(不得添加輔助線);
(2)求證:BE=DF.

【答案】
(1)解:全等三角形有:△ABE≌△CDF,△AFD≌△CEB,△ABC≌△CDA,

理由是:∵四邊形ABCD是平行四邊形,

∴AB=CD,AD=BC,

∵AC=AC,

∴△ABC≌△CDA(SSS);

∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAF=∠BCE,

∵DF∥BE,

∴∠AFD=∠CEB,

即∠AFD=∠CEB,∠DAF=∠BCE,AD=BC,

∴△AFD≌△CEB(AAS);

∵四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∴∠BAE=∠DCF,

∵DF∥BE,

∴∠AFD=∠CEB,

∴∠AEB=∠DFC(等角的補(bǔ)角相等),

即∠BAE=∠DCF,∠AEB=∠CFD,AB=CD,

∴△ABE≌△CDF;


(2)證明:∵由(1)知:△AFD≌△CEB,

∴BE=DF.


【解析】(1)根據(jù)平行四邊形性質(zhì)推出AD=BC,AB=CD,根據(jù)SSS證出△ABC≌△CDA即可;根據(jù)平行線性質(zhì)推出∠AFD=∠CEB,∠DAF=∠BCE,根據(jù)AAS證出△AFD≌△CEB即可;求出∠AEB=∠DFC,∠BAE=∠DCF,根據(jù)AAS證出△ABE≌△CDF即可;(2)由△AFD≌△CEB推出即可.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì)和平行四邊形的性質(zhì),需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠BAC50°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEO的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一塊平行四邊形田地ABCD要平均分給甲、乙兩人,由于在這塊地里有一口水井P,如圖所示,為了甲,乙兩人都能方便使用這口井,請你用所學(xué)的數(shù)學(xué)知識幫助甲,乙兩人平均劃分該田地.

要求:作圖,寫出劃分方案,并證明你的劃分方案符合要求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大酒店有108個相同規(guī)格的房間需要裝飾.一天,3名師傅去裝飾8個房間,結(jié)果其中有40平方米未來得及裝飾;同樣一天5名徒弟去恰好裝飾完9個房間.已知每名師傅比徒弟一天多裝飾30平方米.

(1)求每個房間需要裝飾的面積;

(2)每名師傅每天裝飾多少平方米?每名徒弟呢?

(3)若由1名師傅帶2名徒弟去裝飾這108個房間,需要幾天才能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點(diǎn),由A向C運(yùn)動(與A、C不重合),Q是CB延長線上一點(diǎn),與點(diǎn)P同時以相同的速度由B向CB延長線方向運(yùn)動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.

(1)當(dāng)∠BQD=30°時,求AP的長;

(2)證明:在運(yùn)動過程中,點(diǎn)D是線段PQ的中點(diǎn);

(3)當(dāng)運(yùn)動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB、AC的垂直平分線分別交BC于點(diǎn)E、F.

(1)若△AEF的周長為10cm,則BC的長為______cm.

(2)若∠EAF=100°,則∠BAC______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊ABD點(diǎn),交邊ACE點(diǎn),若△ABC△EBC的周長分別是40cm,24cm,則AB= cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為⊙O外一點(diǎn),PA、PB為⊙O的切線,A、B為切點(diǎn),AC為⊙O的直徑,PO交于⊙O于點(diǎn)E.
(1)試判斷∠APB與∠BAC的數(shù)量關(guān)系;
(2)若⊙O的半徑為4,P是⊙O外一動點(diǎn),是否存在點(diǎn)P,使四邊形PAOB為正方形?若存在,請求出PO的長,并判斷點(diǎn)P的個數(shù)及其滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩輛摩托車同時從相距20km的A,B兩地出發(fā),相向而行.圖中l(wèi)1,l2分別表示甲、乙兩輛摩托車到A地的距離s(km)與行駛時間t(h)的函數(shù)關(guān)系.則下列說法錯誤的是

A. 乙摩托車的速度較快

B. 經(jīng)過0.3小時甲摩托車行駛到A,B兩地的中點(diǎn)

C. 經(jīng)過0.25小時兩摩托車相遇

D. 當(dāng)乙摩托車到達(dá)A地時,甲摩托車距離A地km

查看答案和解析>>

同步練習(xí)冊答案