【題目】已知:△ABC 內(nèi)接于⊙O,過點(diǎn) A 作⊙O 的切線交 CB 的延長線于點(diǎn) P,且∠PAB=45°.
(1)如圖 1,求∠ACB 的度數(shù);
(2)如圖 2,AD 是⊙O 的直徑,AD 交 BC 于點(diǎn) E,連接 CD,求證:AC CD ;
(3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時(shí),點(diǎn) F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的長.
【答案】(1)∠ACB=45°;(2)見解析;(3)
【解析】
(1)連接OA,OB,根據(jù)切線的性質(zhì)求出∠OAB=∠OBA=45°,得到∠AOB=90°,再根據(jù)圓周角定理可得答案;
(2)作AM⊥BC于M,DN⊥BC于N,連接BD,易求,,然后證明△ABM≌△BDN,得到AM=BN,等量代換即可得證;
(3)根據(jù)(2)中結(jié)論求出,然后證明△AMC∽△DNC,AM∥DN,根據(jù)相似三角形的性質(zhì)和平行線分線段成比例定理求得DE和AD,進(jìn)而利用勾股定理求出CD,AC,然后即可求出AB的長,再證明△PAB∽△PCA,求出PA,可得,過點(diǎn)G作GK⊥FB,過點(diǎn)F作FH⊥BG,設(shè)GK=3b,利用三角函數(shù)及等腰三角形的性質(zhì)求出AH和BH,然后列方程求出b值即可解決問題.
解:(1)連接OA,OB,則OA=OB,
∴∠OAB=∠OBA,
∵PA是⊙O的切線,
∴∠PAO=90°,
∵∠PAB=45°,
∴∠OAB=∠OBA=45°,
∴∠AOB=90°,
∴∠ACB=∠AOB=45°;
(2)作AM⊥BC于M,DN⊥BC于N,連接BD,
∵AD是⊙O的直徑,
∴∠ABD=∠ACD=90°,
∵∠ACB=45°,
∴∠CAM=∠BCD=∠CDN=45°,
∴,,
∵∠ADB=∠ACB=45°,
∴AB=BD,
∵∠ABM+∠DBN=90°=∠BDN+∠DBN,
∴∠ABM=∠BDN,
又∵∠AMB=∠BND=90°,
∴△ABM≌△BDN(AAS),
∴AM=BN,
∴;
(3)如圖3,作AM⊥BC于M,DN⊥BC于N,由(2)可知:,
∵,
∴,即,
設(shè)CD=x,則AC=7x,
∵∠AMC=∠DNC=90°,∠ACM=∠DCN=45°,
∴△AMC∽△DNC,
∴,
∵AM⊥BC,DN⊥BC,
∴AM∥DN,
∴,
∴,
∴,,
在Rt△ACD中,AC2+CD2=AD2,
∴,
解得:(負(fù)值已舍去),
∴,,,
∵△AMC是等腰直角三角形,
∴,
∴,
∴,
∵∠P=∠P,∠PAB=∠PCA=45°,
∴△PAB∽△PCA,
∴,
設(shè)PB=5a,則PA=7a,
由PA2=PB·PC得:,
解得:或a=0(舍去),
∴PA=20,
∴,
∴,
過點(diǎn)G作GK⊥FB,過點(diǎn)F作FH⊥BG,
設(shè)GK=3b,則BF=FG=5b,
∴FK=4b,
∴BK=b,
∴,
∴BH,
∴,
∵∠PAB=45°,
∴AH=FH=,
∴,
解得:,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)C是過點(diǎn)A的⊙O的切線上一點(diǎn),連接OC,過點(diǎn)A作OC的垂線交OC于點(diǎn)D,交⊙O于點(diǎn)E,連接CE.
(1)求證:CE與⊙O相切;
(2)連結(jié)BD并延長交AC于點(diǎn)F,若OA=5,sin∠BAE=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小魯在一個(gè)不透明的盒子里裝了5個(gè)除顏色外其他都相同的小球,其中有3個(gè)是紅球,2個(gè)是綠球,每次拿一個(gè)球然后放回去,拿2次,則至少有一次取到綠球的概率是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰被某一條直線分成兩個(gè)等腰三角形,并且其中一個(gè)等腰三角形與原三角形相似,則等腰的頂角的度數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC與BD交于點(diǎn)O,點(diǎn)E在AD上,且DE=CD,連接OE,∠ABE=∠ACB,若AE=2,則OE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為,兩車之間的距離為),圖中的折線表示與之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行探究:
(1)甲、乙兩地之間的距離為 ;
(2)請解釋圖中點(diǎn)的實(shí)際意義:__________;
(3)求線段所表示的與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,若CD=1,EH=3,求BE長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)D在直線AB上,點(diǎn)D的縱坐標(biāo)為6,點(diǎn)C在x軸上且位于原點(diǎn)右側(cè),連接CD,且.
如圖1,求直線CD的解析式;
如圖2,點(diǎn)P在線段AB上點(diǎn)P不與點(diǎn)A,B重合,過點(diǎn)P作軸,交CD于點(diǎn)Q,點(diǎn)E是PQ的中點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為t,EQ的長為d,求d與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
如圖3,在的條件下,以CQ為斜邊作等腰直角,且點(diǎn)M在直線CD的右側(cè),連接OE,OM,當(dāng)時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(10,8),連接AC,已知反比例函數(shù)y=(m≠0)在第一象限的圖象經(jīng)過矩形OABC的對(duì)角線的交點(diǎn)D,并交BC于點(diǎn)E,交AB于點(diǎn)F.
(1)求線段AC所在直線的解析式和m的值.
(2)連接OE,OF,EF,求△OEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com