【題目】若多項(xiàng)式x2kx24可以分解因式為(x3)·(x8),則k的值為(  )

A. 5 B. 5

C. 11 D. 11

【答案】A

【解析】

(x3)·(x8) 進(jìn)行整式的乘法運(yùn)算,然后根據(jù)對(duì)應(yīng)相等可得出k的值.

解:由題意得:x2+kx-24=x-3)(x+8=x2+5x-24,
故可得:k=5
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國的陸地面積約為9 600 000km2 , 把9 600 000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)AB,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,CAB=90°,AC=AB=6,D,E分別是AB,AC的中點(diǎn),若等腰RtADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到RtAD1E1,設(shè)旋轉(zhuǎn)角為α0α≤180°),記直線BD1CE1的交點(diǎn)為P

1)如圖1,當(dāng)α=90°時(shí),線段BD1的長等于  ,線段CE1的長等于  ;

2)如圖2,當(dāng)α=135°時(shí),設(shè)直線BD1CA的交點(diǎn)為F,求證:BD1=CE1,且BD1CE1;

3)點(diǎn)PAB所在直線的距離的最大值是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y2x2向左平移一個(gè)單位,再向下平移2個(gè)單位,就得到拋物線( )

A. y2(x1)22B. y2(x1)22C. y2(x1)22D. y2(x1)22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1、0、1、2這四個(gè)數(shù)中,最小的數(shù)是(
A.0
B.﹣1
C.1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:a3﹣4a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABDC中,ABC的平分線交AD于點(diǎn)E,過點(diǎn)ABE的垂線交BE于點(diǎn)F,交BC于點(diǎn)G,連接EG,CF.

(1)求證:四邊形ABGE是菱形;

(2)ABC=60°,AB=4AD=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是(
A.摸出的四個(gè)球中至少有一個(gè)球是白球
B.摸出的四個(gè)球中至少有一個(gè)球是黑球
C.摸出的四個(gè)球中至少有兩個(gè)球是黑球
D.摸出的四個(gè)球中至少有兩個(gè)球是白球

查看答案和解析>>

同步練習(xí)冊(cè)答案