【題目】如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB邊上有一動(dòng)點(diǎn)P(不與A、B重合),連結(jié)DP,作PQ⊥DP,使得PQ交射線BC于點(diǎn)E,設(shè)AP=x.
⑴當(dāng)x為何值時(shí),△APD是等腰三角形?
⑵若設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;
⑶若BC的長可以變化,在現(xiàn)在的條件下,是否存在點(diǎn)P,使得PQ經(jīng)過點(diǎn)C?若存在,求出相應(yīng)的AP的長;若不存在,請說明理由,并直接寫出當(dāng)BC的長在什么范圍內(nèi)時(shí),可以存在這樣的點(diǎn)P,使得PQ經(jīng)過點(diǎn)C.
【答案】.
【解析】
⑴解:過D點(diǎn)作DH⊥AB于H,
則四邊形DHBC為矩形,
∴DH=BC=4,HB=CD=6 ∴AH=2,AD=2…………………1分
∵AP=x, ∴PH=x-2,
情況①:當(dāng)AP=AD時(shí),即x=2……………………………2分
情況②:當(dāng)AD=PD時(shí),則AH=PH
∴2=x-2,解得x= 4………………………………………………………·3分
情況③:當(dāng)AP=PD時(shí),
則Rt△DPH中,x2=42+(x-2)2,解得x=5…………………………………4分
∵2<x<8,∴當(dāng)x為2、4、5時(shí),△APD是等腰三角形…………………………5分
⑵易證:△DPH∽△PEB ………………………………………………………………7分
∴,∴整理得:y=(x-2)(8-x)=-x2+x-4………8分
⑶若存在,則此時(shí)BE=BC=4,即y=-x2+x-4=4,整理得:x2-10x+32=0
∵△=(-10)2-4×32<0,∴原方程無解,……………………………………………9分
∴不存在點(diǎn)P,使得PQ經(jīng)過點(diǎn)C……………………………………………………10分
當(dāng)BC滿足0<BC≤3時(shí),存在點(diǎn)P,使得PQ經(jīng)過點(diǎn)C……………………………12分
1、過D點(diǎn)作DH⊥AB于H,則四邊形DHBC為矩形,在Rt△AHD中,由勾股定理可求得DH、AD、PH的值,若△ADP為等腰三角形,則分三種情況:①當(dāng)AP=AD時(shí),x=AP=AD,②當(dāng)AD=PD時(shí),有AH=PH,故x=AH+PH,③當(dāng)AP=PD時(shí),則在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP.
2、易證:△DPH∽△PEB,即,故可求得y與x的關(guān)系式.
3、利用△DPH∽△PEB,得出,進(jìn)而利用根的判別式和一元二次不等式解集得出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)蘇科版九下《銳角三角函數(shù)》一章時(shí),小明同學(xué)對一個(gè)角的倍角的三角函數(shù)值是否具有關(guān)系產(chǎn)生了濃厚的興趣,進(jìn)行了一些研究.
(1)初步嘗試:我們知道:tan60°= ,tan30°= ,發(fā)現(xiàn)結(jié)論:tanA 2tan∠A(填“=”或“≠”);
(2)實(shí)踐探究:如圖1,在Rt△ABC中,∠C=90°,AC=2,BC=1,求tan∠A的值;小明想構(gòu)造包含∠A的直角三角形:延長CA至D,使得DA=AB,連接BD,所以得到∠D=∠A,即轉(zhuǎn)化為求∠D的正切值.
請按小明的思路進(jìn)行余下的求解:
(3)拓展延伸:如圖2,在Rt△ABC中,∠C=90°,AC=3,tanA=.
①tan2A= ;
②求tan3A的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是【 】
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣(2a+1)x+c(a>0)的圖象經(jīng)過坐標(biāo)原點(diǎn)O,一次函數(shù)y=﹣x+4與x軸、y軸分別交于點(diǎn)A、B.
(1)c= ,點(diǎn)A的坐標(biāo)為 ;
(2)若二次函數(shù)y=ax2﹣(2a+1)x+c的圖象經(jīng)過點(diǎn)A,求a的值;
(3)若二次函數(shù)y=ax2﹣(2a+1)x+c的圖象與△AOB只有一個(gè)公共點(diǎn),直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.
(1)求證:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com