【題目】如圖,在△ABC中,∠C=90°,D是BC邊上一點,以DB為直徑的⊙O經過AB的中點E,交AD的延長線于點F,連結EF.
(1)求證:∠1=∠F.
(2)若sinB= ,EF=2 ,求CD的長.
【答案】
(1)
證明:連接DE,
∵BD是⊙O的直徑,
∴∠DEB=90°,
∵E是AB的中點,
∴DA=DB,
∴∠1=∠B,
∵∠B=∠F,
∴∠1=∠F;
(2)
解:∵∠1=∠F,
∴AE=EF=2 ,
∴AB=2AE=4 ,
在Rt△ABC中,AC=ABsinB=4,
∴BC= =8,
設CD=x,則AD=BD=8﹣x,
∵AC2+CD2=AD2,
即42+x2=(8﹣x)2,
∴x=3,即CD=3.
【解析】(1)連接DE,由BD是⊙O的直徑,得到∠DEB=90°,由于E是AB的中點,得到DA=DB,根據等腰三角形的性質得到∠1=∠B等量代換即可得到結論;
(2)g根據等腰三角形的判定定理得到AE=EF=2 ,推出AB=2AE=4 ,在Rt△ABC中,根據勾股定理得到BC= =8,設CD=x,則AD=BD=8﹣x,根據勾股定理列方程即可得到結論.本題考查了圓周角定理,解直角三角形的性質,等腰三角形的性質,勾股定理,正確的作出輔助線構造直角三角形是解題的關鍵.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為(2,9),與y軸交于點A(0,5),與x軸交于點E、B.
(1)求二次函數y=ax2+bx+c的表達式;
(2)過點A作AC平行于x軸,交拋物線于點C,點P為拋物線上的一點(點P在AC上方),作PD平行于y軸交AB于點D,問當點P在何位置時,四邊形APCD的面積最大?并求出最大面積;
(3)若點M在拋物線上,點N在其對稱軸上,使得以A、E、N、M為頂點的四邊形是平行四邊形,且AE為其一邊,求點M、N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一張三角形紙片ABC,其中∠C=90°,AC=4,BC=3.現小林將紙片做三次折疊:第一次使點A落在C處;將紙片展平做第二次折疊,使點B落在C處;再將紙片展平做第三次折疊,使點A落在B處.這三次折疊的折痕長依次記為a,b,c,則a,b,c的大小關系是( )
A.c>a>b
B.b>a>c
C.c>b>a
D.b>c>a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解學生對“垃圾分類”知識的了解程度,某學校對本校學生進行抽樣調查,并繪制統(tǒng)計圖,其中統(tǒng)計圖中沒有標注相應人數的百分比.請根據統(tǒng)計圖回答下列問題:
(1)求“非常了解”的人數的百分比.
(2)已知該校共有1200名學生,請估計對“垃圾分類”知識達到“非常了解”和“比較了解”程度的學生共有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣.某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統(tǒng)計圖(未完成),請根據圖中信息,解答下列問題:
(1)此次共調查了 名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學生2500人,估計該校喜歡“社科類”書籍的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數;
(2)若OF平分∠COE,∠BOF=15°,若設∠AOE=x°.
①用含x的代數式表示∠EOF;
②求∠AOC的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com