【題目】1)正方形ABCDE、F分別在邊BC、CD上(不與端點(diǎn)重合),∠EAF45°,EFAC交于點(diǎn)G

如圖(i),若AC平分∠EAF,直接寫出線段EF,BEDF之間等量關(guān)系;

如圖(ⅱ),若AC不平分∠EAF,中線段EF,BE,DF之間等量關(guān)系還成立嗎?若成立請(qǐng)證明;若不成立請(qǐng)說明理由

2)如圖(ⅲ),矩形ABCDAB4,AD8.點(diǎn)M、N分別在邊CD、BC上,AN2,∠MAN45°,求AM的長度.

【答案】1EFBE+DF;見解析,中線段EFBE,DF之間等量關(guān)系還成立:EFBE+DF見解析;2AM

【解析】

1)①結(jié)合題意由正方形ABCD的性質(zhì)得到△ABE≌△ADF,則∠AGE=∠AGF90°,又因?yàn)?/span>AE平分∠BAC,得到EFBE+DF;

②作圖延長CD到點(diǎn)H,截取DHBE,連接AH,根據(jù)已知條件求證△AEB≌△AHD,則AEAH,∠BAE=∠HAD,再證△EAF≌△HAF,則有EFHFDF+DHBE+DF.

2)根據(jù)矩形的性質(zhì),和相似△ABN∽△GCN,得到APPM,再設(shè)設(shè)APx,最終求得

AM

1)①如圖(i),

∵四邊形ABCD是正方形,

∴∠BAC=∠CAD45°,

∵∠EAF45°,AC平分∠EAF,

∴∠BAE=∠EAG=∠DAF=∠FAG22.5°

ABAD,∠B=∠D90°

∴△ABE≌△ADFASA),

BEDFAEAF,

∴∠AEF=∠AFE

ACEF,

∴∠AGE=∠AGF90°,

AE平分∠BAC,

BEEG,DFGF,

EFBE+DF;

②,①中線段EFBE,DF之間等量關(guān)系還成立:EFBE+DF;

如圖(ⅱ),延長CD到點(diǎn)H,截取DHBE,連接AH,

在△AEB與△AHD中,

,

∴△AEB≌△AHDSAS),

AEAH,∠BAE=∠HAD

∵∠EAF45°,∠BAD90°,

∴∠BAE+DAF45°

∴∠DAF+DAH45°.即∠EAF=∠HAF,

在△EAF與△HAF中,

,

∴△EAF≌△HAFSAS),

EFHFDF+DHBE+DF

2)如圖(iii),延長AN,DC交于點(diǎn)G,過MMPAG于點(diǎn)P,

∵四邊形ABCD是矩形,

∴∠B90°,

RtABN中,AB4,AN2,

BN2,CN826

ABCG

∴△ABN∽△GCN,

NG6,

∵∠MAN45°,∠APM90°,

APPM,

設(shè)APx,則PM2x,PG2x,

AG2+6x+2x,

x,

AMx

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格圖中,我們稱每個(gè)小正方形的頂點(diǎn)為格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形”,根據(jù)圖形,回答下列問題.

(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過怎樣的平移得到的?

(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后點(diǎn)A的坐標(biāo)為(-3,4),請(qǐng)寫出格點(diǎn)三角形DEF各頂點(diǎn)的坐標(biāo),并求出三角形DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旺財(cái)水果店每天都會(huì)進(jìn)一些草莓銷售,在一周銷售過程中他發(fā)現(xiàn)每天的銷售量y(單位:千克)會(huì)隨售價(jià)x(單位:元/千克)而變化,部分?jǐn)?shù)據(jù)記錄如表

售價(jià)x(單位:元/千克)

30

25

20

每天銷售量y(單位:千克)

5

55

105

如果已知草莓每天銷量y與售價(jià)x30.5x14)滿足一次函數(shù)關(guān)系.

1)請(qǐng)根據(jù)表格中數(shù)據(jù)求出這個(gè)一次函數(shù)關(guān)系式;

2)如果進(jìn)價(jià)為14/千克,請(qǐng)判斷售價(jià)分別定為20/千克和25/千克,哪天的銷售利潤更高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題背景】

如圖①所示,在正方形ABCD的內(nèi)部,作∠DAE=ABF=BCG=CDH,根據(jù)三角形全等的條件,易得DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.

【類比研究】

如圖②所示,在正ABC的內(nèi)部,作∠BAD=CBE=ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(diǎn)(D,E,F(xiàn)三點(diǎn)不重合).

(1)ABD,BCE,CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;

(2)DEF是否為正三角形?請(qǐng)說明理由;

(3)連結(jié)AE,若AF=DF,AB=7,求DEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α度角得到線段AC,將線段AB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α度角得到線段BD(0°<α<180°),連結(jié)BC、AD.當(dāng)α=_______度時(shí),四邊形ACBD是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線y=x與雙曲線交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(6,m).

(1)求雙曲線的解析式;

(2)點(diǎn)C(n,4)在雙曲線上,求△AOC的面積;

(3)在(2)的條件下,在x軸上找出一點(diǎn)P,使△AOC的面積等于△AOP的面積的三倍.請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的漢字聽寫大賽預(yù)賽,各參賽選手的成績?nèi)缦拢?/span>

(1)班:88,9192,93,93,93,94,98,98,100;

(2)班:89,93,9393,9596,96,9898,99

通過整理,得到數(shù)據(jù)分析表如下:

班級(jí)

最高分

平均分

中位數(shù)

眾數(shù)

方差

(1)

100

m

93

93

12

(2)

99

95

n

p

8.4

(1)直接寫出表中m、np的值為:m=______,n=______p=______;

(2)依據(jù)數(shù)據(jù)分析表,有人說:最高分在(1)班,(1)班的成績比(2)班好.但也有人說(2)班的成績要好.請(qǐng)給出兩條支持九(2)班成績更好的理由;

(3)學(xué)校確定了一個(gè)標(biāo)準(zhǔn)成績,等于或大于這個(gè)成績的學(xué)生被評(píng)定為優(yōu)秀等級(jí),如果九(2)班有一半的學(xué)生能夠達(dá)到優(yōu)秀等級(jí),你認(rèn)為標(biāo)準(zhǔn)成績應(yīng)定為______分,請(qǐng)簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,P為直線AD上一點(diǎn),以PD為邊做正方形PDEF,使點(diǎn)E在線段CD的延長線上,連接AC、AF.若,則的度數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某牛奶廠在一條南北走向的大街上設(shè)有O,A,B,C四家特約經(jīng)銷店.A店位于O店的南面3千米處;B店位于O店的北面1千米處,C店在O店的北面2千米處.

(1)請(qǐng)以O為原點(diǎn),向北的方向?yàn)檎较颍?/span>1個(gè)單位長度表示1千米,畫一條數(shù)軸,你能在數(shù)軸上分別表示出O,A,B,C的位置嗎?

(2)牛奶廠的送貨車從O店出發(fā),要把一車牛奶分別送到A,B,C三家經(jīng)銷店,那么送貨車走的最短路程是多少千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案