【題目】如圖,平行四邊形ABCD中,∠BDC=30°,DC=4,AEBDECFBDF,且EF恰好是BD的三等分點,AE、CF的延長線分別交DCABN、M點,那么四邊形MENF的面積是( )

A.B.C.2D.2

【答案】B

【解析】

由已知條件可得ENEF的長,進而可得RtNEF的面積,即可求解四邊形MENF的面積.

解:∵EFBD的三等分點,

DE=EF=BF,

AEBD,CFBD

ENFC,

EN是△DFC的中位線,

EN=FC.

∵在RtDCF中,∠BDC=30°,DC=4,

FC=2,

EN=1,

∴在RtDEN中,∠EDN=30°,

DN=2EN=2,DE==,

EF=DE=

SENF= ×1×=,

四邊形MENF的面積=×2=.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】華為手機新款上市,十分暢銷.某經(jīng)銷商進價每臺3000元,售價每臺4000 .一月份銷量為512臺,二、三月份銷量持續(xù)走高,三月份銷量達到800.

1)求二、三月份每月銷量的平均增長率;

2)根據(jù)市場調(diào)查經(jīng)驗,四月份此款手機銷售情況將不再火爆而是趨于平穩(wěn).若售價不變,四月份銷量將與三月份持平;若降價促銷,每臺每降價50元,月銷量將增加100.要使四月份利潤達到90萬元,每臺應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點MN同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校以隨機抽樣的方式開展了“中學生喜歡數(shù)學的程度”的問卷調(diào)查,調(diào)查的結(jié)果分為A(不喜歡)、B(一般)、C(比較喜歡)、D(非常喜歡)四個等級,圖1、2是根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:

(1)C等級所占的圓心角為________°;

(2)請直接在圖2中補全條形統(tǒng)計圖;

(3)若該校有學生1000人,請根據(jù)調(diào)查結(jié)果估計比較喜歡的學生人數(shù)為多少人.

某!爸袑W生喜歡數(shù)學的程度”的扇形統(tǒng)計圖 某!爸袑W生喜歡數(shù)學的程度”的條形統(tǒng)計圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平行四邊形ABCD中,CD2AD,BEAD,點FDC中點,連接EFBF,下列結(jié)論:①∠ABC2ABF;②EFBF;③S四邊形DEBC2SEFB;④∠CFE3DEF,其中正確的有_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠BAD的角平分線交BC于點E,交DC的延長線于點F,連接DE

1)求證:DADF

2)若∠ADE=∠CDE30°,DE2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將A,B,C,D四人隨機分成甲、乙兩組參加羽毛球比賽,每組兩人。

(1)A在甲組的概率是多少?

(2)A,B都在甲組的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADEDCF,連接AF,BE

(圖1) (圖2) (備用圖)

(1)請判斷:AFBE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;

(2)如圖2,若將條件“兩個等邊三角形ADEDCF”變?yōu)椤皟蓚等腰三角形ADEDCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;

(3)若三角形ADEDCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.

查看答案和解析>>

同步練習冊答案