【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,證明:DE=DF
(2)如圖2,將∠EDF繞點D順時針旋轉一定的角度,DF仍與線段AC相交于點F.DE=DF仍然成立嗎?說明理由.
(3)如圖3,將∠EDF繼續(xù)繞點D順時針旋轉一定的角度,使DF與線段AC的延長線相交于點F,DE=DF仍然成立嗎?說明理由.
【答案】(1)見解析;(2)結論仍然成立.,DE=DF,見解析;(3)仍然成立,DE=DF,見解析
【解析】
(1)由題意根據全等三角形的性質與判定,結合等邊三角形性質證明△BED≌△CFD(ASA),即可證得DE=DF;
(2)根據題意先取AC中點G,連接DG,繼而再全等三角形的性質與判定,結合等邊三角形性質證明△EDG≌△FDC(ASA),進而證得DE=DF;
(3)由題意過點D作DN⊥AC于N,DM⊥AB于M, 繼而再全等三角形的性質與判定,結合等邊三角形性質證明△DME≌△DNF(ASA),即可證得DE=DF.
解:(1)∵AB=AC,∠A=60°,
∴△ABC是等邊三角形,即∠B=∠C=60°,
∵D是BC的中點,
∴BD=CD,
∵∠EDF=120°,DF⊥AC,
∴∠FDC=30°,
∴∠EDB=30°,
∴△BED≌△CFD(ASA),
∴DE=DF.
(2)取AC中點G,連接DG,如下圖,
∵D為BC的中點,
∴DG=AC=BD=CD,
∴△BDG是等邊三角形,
∴∠GDE+∠EDB=60°,
∵∠EDF=120°,
∴∠FDC+∠EDB=60°,
∴∠EDG=∠FDC,
∴△EDG≌△FDC(ASA),
∴DE=DF,
∴結論仍然成立.
(3)如下圖,過點D作DN⊥AC于N,DM⊥AB于M,
∴∠DME=∠DNF=90°,
由(1)可知∠B=∠C=60°,
∴∠NDC=∠BDM=30°,DM=DN,
∴∠MDN=120°,即∠NDF=∠MDE,
∴△DME≌△DNF(ASA),
∴DE=DF,
∴仍然成立.
科目:初中數學 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請結合圖中所給信息解答下列問題:
(1)本次共調查 名學生;扇形統(tǒng)計圖中C所對應扇形的圓心角度數是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有800名學生,根據以上信息,請你估計全校學生中對這些交通法規(guī)“非常了解”的有多少名?
(4)通過此次調查,數學課外實踐小組的學生對交通法規(guī)有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).
(1)求直線AB的函數關系式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N. 設點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數關系式,并寫出t的取值范圍;
(3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=﹣x2+2x+3的圖象交x軸于點A、B(點A在點B的左側).若把點B向上平移m(m>0)個單位長度得點B1,若點B1向左平移n(n>0)個單位長度,將與該二次函數圖象上的點B2重合;若點B1向左平移(n+2)個單位長度,將與該二次函數圖象上的點B3重合.則n的值為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)已知矩形AOCD在平面直角坐標系xOy中,∠CAO=60°,OA=2,B點的坐標為(2,0),動點M以每秒2個單位長度的速度沿A→C→B運動(M點不與點A、點B重合),設運動時間為t秒.
(1)求經過B、C、D三點的拋物線解析式;
(2)點P在(1)中的拋物線上,當M為AC中點時,若△PAM≌△PDM,求點P的坐標;
(3)當點M在CB上運動時,如圖(2)過點M作ME⊥AD,MF⊥x軸,垂足分別為E、F,設矩形AEMF與△ABC重疊部分面積為S,求S與t的函數關系式,并求出S的最大值;
(4)如圖(3)點P在(1)中的拋物線上,Q是CA延長線上的一點,且P、Q兩點均在第三象限內,Q、A是位于直線BP同側的不同兩點,若點P到x軸的距離為d,△QPB的面積為2d,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BE⊥AC于E,M為AB邊的中點,連結ME、MD、ED,設AB=10,∠DBE=30°,則△EDM的面積為____________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是的中點,則下列結論:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】河南省政府為促進農業(yè)發(fā)展,加快農村建設,計劃扶持興建一批新型鋼管裝配式大棚,如圖1所示線段AB、BD分別為大棚的墻高和跨度,AC表示保溫板的長,已知墻高AB為3米,墻面與保溫板所成的角∠BAC=150°,在點D處測得A點、C點的仰角分別為9°,15.6°,如圖2所示求保溫板AC的長是多少米?(精確到0.1米)(參考數據:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線與軸交于,兩點,與軸交于點,已知點,且對稱軸為直線.
(1)求該拋物線的解析式;
(2)點是第四象限內拋物線上的一點,當的面積最大時,求點的坐標;
(3)如圖2,點是拋物線上的一個動點,過點作軸,垂足為.當時,直接寫出點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com