【題目】如圖,△ABC和△ADE都是等腰直角三角形,CEBD相交于點(diǎn)M,BDAC于點(diǎn)N.

1)證明:BDCE;

2)證明:BDCE

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)要證明BDCE,只要證明△ABD≌△ACE即可,兩三角形中,已知的條件有ADAE,ABAC,那么只要再得出兩對應(yīng)邊的夾角相等即可得出三角形全等的結(jié)論.我們發(fā)現(xiàn)∠BAD和∠EAC都是90°加上一個

CAD,因此∠CAE=∠BAD.由此構(gòu)成了兩三角形全等中的(SAS)因此兩三角形全等.

2)要證BDCE,只要證明∠BMC是個直角就行了.由(1)得出的全等三角形我們可知:

ABN=∠ACE,三角形ABC中,∠ABN+CBN+BCN90°,根據(jù)上面的相等角,我們可得出∠ACE+CBN+BCN90°,即∠ABN+ACE90°,因此∠BMC就是直角.

證明:(1)∵∠BAC=∠DAE90°

∴∠BAC+CAD=∠DAE+CAD

即∠CAE=∠BAD

在△ABD和△ACE

∴△ABD≌△ACESAS

BDCE

2)∵△ABD≌△ACE

∴∠ABN=∠ACE

∵∠ANB=∠CND

∴∠ABN+ANB=∠CND+NCE90°

∴∠CMN90°

BDCE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:

(1)每千克核桃應(yīng)降價多少元?

(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的幾折出售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),直線軸于點(diǎn)

(1)求直線的表達(dá)式和點(diǎn)的坐標(biāo);

(2)在直線上有一點(diǎn),使得的面積為4,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點(diǎn)EFBD上,且DF=BE=1,四邊形AECF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是36,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn).若點(diǎn)DBC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則△CDM周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】意大利文藝復(fù)興時期的著名畫家達(dá)芬奇利用兩張一樣的紙片拼出不一樣的空洞,從而巧妙的證明了勾股定理.小明用兩張全等的的紙片①和②拼成如圖1所示的圖形,中間的六邊形由兩個正方形和兩個全等的直角三角形組成.已知六邊形的面積為28.小明將紙片②翻轉(zhuǎn)后拼成如圖2所示的圖形,其中,則四邊形的面積為(

A.16B.20C.22D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】晚飯后,小林和小京在社區(qū)廣場散步,兩人在燈下沿直線NQ移動,如圖,當(dāng)小林正好站在廣場的A點(diǎn)(距N點(diǎn)5塊地磚長)時,其影長AD恰好為1塊地磚長;當(dāng)小京正好站在廣場的B點(diǎn)(距N點(diǎn)9塊地磚長)時,其影長BF恰好為2塊地磚長.已知廣場地面由邊長為0.8米的正方形地磚鋪成,小林的身高AC1.6米,MNNQ,ACNQ,BENQ.請你根據(jù)以上信息,求出小京身高BE的長.(結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形的底邊長為,面積是,腰的垂直平分線分別交,邊于點(diǎn).若點(diǎn)邊的中點(diǎn),點(diǎn)為線段上一動點(diǎn),則周長的最小值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,在直線上取一點(diǎn),使為等腰三角形,則符合條件的點(diǎn)共有(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案