【題目】已知:是最小的正整數(shù),且滿足,請(qǐng)回答問題:

1)請(qǐng)直接寫出、、的值. , ,

2、、所對(duì)應(yīng)的點(diǎn)分別為、,點(diǎn)為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為,點(diǎn)、之間運(yùn)動(dòng)時(shí),請(qǐng)化簡式子:(請(qǐng)寫出化簡過程)

3)在(1)(2)的條件下,點(diǎn)、開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒個(gè)單位長度和個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)經(jīng)過秒鐘過后,若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.請(qǐng)問:的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說明理由:若不變,請(qǐng)求其值.

【答案】(1)-1,1,6;(2)-10;(3)不變,值為3.

【解析】

(1)根據(jù)最小的正整數(shù)是1,推出b=1,再利用非負(fù)數(shù)的性質(zhì)求出a、c即可.
(2)首先確定x的范圍,再化簡絕對(duì)值即可.
(3)BCAB的值不變.根據(jù)題意用n,t表示出BC、AB即可解決問題.

解:∵b是最小的正整數(shù),
b=1,
(c6)2+|a+b|=0,(c6)20|a+b|0,
c=6,a=1,b=1,
故答案為11,6;

2).由題意1<x<1

∴|x+1||x1|2|x+5|x+1+x12x1010

3)不變,

由題意BC5+5nt2nt5+3ntABnt+2+2nt2+3nt,

∴BCAB(5+3nt)(2+3nt)3,

∴BCAB的值不變,BCAB3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB8厘米,如果動(dòng)點(diǎn)P在線段AB上以2厘米/秒的速度由A點(diǎn)向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在以1厘米/秒的速度線段BC上由C點(diǎn)向B點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)B點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)過程停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)AQDP時(shí),t的值為_____秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB⊥直線l于點(diǎn)B,點(diǎn)D在直線l上,分別以AB,AD為邊作等邊三角形ABC和等邊三角形ADE,直線CE交直線l于點(diǎn)F

1)當(dāng)點(diǎn)F在線段BD上時(shí),如圖1,線段DFCE,CF之間的數(shù)量關(guān)系是   ;

2)當(dāng)點(diǎn)F在線段DB的延長線上時(shí),如圖2

1)中的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)寫出證明過程;若不成立,請(qǐng)重新寫出正確的結(jié)論,并寫出證明過程;

若等邊△ABC和等邊△ADE的邊長分別是DF3,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠AOB90°,OC平分∠AOB,點(diǎn)P在射線OC上.點(diǎn)E在射線OA上,點(diǎn)F在射線OB上,且∠EPF90°.

1)如圖1,求證:PEPF

2)如圖2,作點(diǎn)F關(guān)于直線EP的對(duì)稱點(diǎn)F′,過F′點(diǎn)作FHOFH,連接EF′,FHEP交于點(diǎn)M.連接FM,圖中與∠EFM相等的角共有   個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠AOB,PAOA,PBOB,垂足分別為AB.下列結(jié)論中:①PA=PB;②PO平分∠APB;③OA=OBAB垂直平分OP,一定成立的是_________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雞兔同籠問題是我國古代著名趣題之一,大約在 1500 年前,《孫子算經(jīng)》中就記載了這個(gè)有趣的問題.書中是這樣敘述的:今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?這四句話的意思是:有若干只雞、兔同在一個(gè)籠子里,從上上面數(shù),有 35 個(gè)頭;從下面數(shù),有 94 只腳 .求籠中各有幾只雞和兔?經(jīng)計(jì)算可得( )

A. 20 只,兔 15 B. 12 只,兔 23

C. 15 只,兔 20 D. 23 只,兔 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察圖形,解答問題:

(1)按下表已填寫的形式填寫表中的空格:

三個(gè)角上三個(gè)數(shù)的積

1×(﹣1)×2=﹣2

(﹣3)×(﹣4)×(﹣5)=﹣60

   

三個(gè)角上三個(gè)數(shù)的和

1+(﹣1)+2=2

(﹣3)+(﹣4)+(﹣5)=﹣12

   

積與和的商

(﹣2)÷2=﹣1

   

   

(2)請(qǐng)用你發(fā)現(xiàn)的規(guī)律求出圖中的數(shù)x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在四邊形 中,,,,,求證:

2)如圖,在離水面高度為 米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子 的長為 米,此人以 米每秒的速度收繩, 秒后船移動(dòng)到點(diǎn) 的位置,問船向岸邊移動(dòng)了多少米?(假設(shè)繩子是直的,結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)學(xué)習(xí)《探索全等三角形條件》后,老師提出了如下問題:如圖①,ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍。同學(xué)通過合作交流,得到了如下的解決方法:延長ADE,使DE=AD,連接BE.根據(jù)SAS可證得到ADCEDB,從而根據(jù)三角形的三邊關(guān)系可求得AD的取值范圍是 。解后反思:題目中出現(xiàn)中點(diǎn)”“中線等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.

(直接運(yùn)用)如圖②,ABAC,ADAE,AB=AC,AD=AE,AFACD的邊CD上中線.求證:BE=2AF.

(靈活運(yùn)用)如圖③,在ABC中,∠C=90°,DAB的中點(diǎn),DEDF,DEAC于點(diǎn)E,DFAB于點(diǎn)F,連接EF,試判斷以線段AE、BF、EF為邊的三角形形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案