【題目】如圖,直線MN∥PQ,點A在直線MN與PQ之間,點B在直線MN上,連結AB.∠ABM的平分線BC交PQ于點C,連結AC,過點A作AD⊥PQ交PQ于點D,作AF⊥AB交PQ于點F,AE平分∠DAF交PQ于點E,若∠CAE=45°,∠ACB=∠DAE,則∠ACD的度數(shù)是_____

【答案】27°.

【解析】

延長FA與直線MN交于點K,通過角度的不斷轉(zhuǎn)換解得∠BCA=45°.

延長FA與直線MN交于點K,

由圖可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,

因為MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,

所以∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,

所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°.

∠ACD的度數(shù)是:27°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD平分∠BAC,∠EAD=∠EDA.

(1)∠EAC與∠B相等嗎?為什么?

(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AEBF,AC平分BAE,且交BF于點C,BD平分ABF,且交AE于點D,AC與BD相交于點O,連接CD

(1)求AOD的度數(shù);

(2)求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時用到的一個圖形,a、b、cRtABCRtBED邊長,易知AE=c,這時我們把關于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請解決下列問題

寫出一個“勾系一元二次方程”;

求證關于x的“勾系一元二次方程”ax+cx+b=0必有實數(shù)根

x=1是“勾系一元二次方程”ax+cx+b=0的一個根,且四邊形ACDE的周長是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個裝有進水管和出水管的容器,從某時刻開始4min內(nèi)只進水不出水,在隨后的8min內(nèi)既進水又出水,接著關閉進水管直到容器內(nèi)的水放完,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:L)與時間(單價:min)之間的關系如圖所示。在第_______分鐘時該容器內(nèi)的水恰好為10L.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(3)班為了組隊參加學校舉行的“五水共治”知識競賽,在班里選取了若干名學生,分成人數(shù)相同的甲、乙兩組,進行了四次“五水共治”模擬競賽,成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計圖.
根據(jù)統(tǒng)計圖,解答下列問題:
(1)第三次成績的優(yōu)秀率是多少?并將條形統(tǒng)計圖補充完整;
(2)已求得甲組成績優(yōu)秀人數(shù)的平均數(shù) =7,方差 =1.5,請通過計算說明,哪一組成績優(yōu)秀的人數(shù)較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形的兩個頂點,以對角線為邊作正方形,再以正方形的對角線作正方形,…,依此規(guī)律,則點的坐標是( )

A. (-8,0) B. (0,8)

C. (0,8 D. (0,16)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點,點E、F分別為BO、DO的中點,連接AF,CE.

(1)求證:四邊形AECF是平行四邊形;

(2)如果E,F(xiàn)點分別在DB和BD的延長線上時,且滿足BE=DF,上述結論仍然成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點A,BO,C為數(shù)軸上四點,點A對應數(shù)aa﹣2),點O對應0,點C對應3,AB=2 AB表示點A到點B的距離).

1)填空:點C到原點O的距離   ,:點B對應的數(shù)   .(用含有a的式子)

2)如圖2,將一刻度尺放在數(shù)軸上,刻度尺上“6cm”“8.7cm”分別對應數(shù)軸上的點O和點C,若BC=5,求a的值和點A在刻度尺上對應的刻度.

3)如圖3,在(2)的條件下,點A1單位長度/秒的逮度向右運動,同時點C向左運動,若運動3秒時,點A和點C到原點D的距離相等,求點C的運動速度.)

查看答案和解析>>

同步練習冊答案