【題目】矩形AOBC中,OB=4,OA=3.分別以OB,OA所在直線為x軸,y軸,建立如圖1所示的平面直角坐標(biāo)系.F是BC邊上一個(gè)動(dòng)點(diǎn)(不與B,C重合),過點(diǎn)F的反比例函數(shù)y=(k>0)的圖象與邊AC交于點(diǎn)E.
(1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);
(2)連接EF,求∠EFC的正切值;
(3)如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求此時(shí)反比例函數(shù)的解析式.
【答案】(1)E(2,3);(2);(3).
【解析】(1)先確定出點(diǎn)C坐標(biāo),進(jìn)而得出點(diǎn)F坐標(biāo),即可得出結(jié)論;
(2)先確定出點(diǎn)F的橫坐標(biāo),進(jìn)而表示出點(diǎn)F的坐標(biāo),得出CF,同理表示出CF,即可得出結(jié)論;
(3)先判斷出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出結(jié)論.
(1)∵OA=3,OB=4,
∴B(4,0),C(4,3),
∵F是BC的中點(diǎn),
∴F(4,),
∵F在反比例y=函數(shù)圖象上,
∴k=4×=6,
∴反比例函數(shù)的解析式為y=,
∵E點(diǎn)的坐標(biāo)為3,
∴E(2,3);
(2)∵F點(diǎn)的橫坐標(biāo)為4,
∴F(4,),
∴CF=BC﹣BF=3﹣=
∵E的縱坐標(biāo)為3,
∴E(,3),
∴CE=AC﹣AE=4﹣=,
在Rt△CEF中,tan∠EFC=,
(3)如圖,由(2)知,CF=,CE=,,
過點(diǎn)E作EH⊥OB于H,
∴EH=OA=3,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折疊知,EG=CE,F(xiàn)G=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴,
∴,
∴BG=,
在Rt△FBG中,FG2﹣BF2=BG2,
∴()2﹣()2=,
∴k=,
∴反比例函數(shù)解析式為y=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,④中,正確的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績?nèi)缦卤恚?/span>
跳繩成績(個(gè)) | 132 | 133 | 134 | 135 | 136 | 137 |
一班人數(shù)(人) | 1 | 0 | 1 | 5 | 2 | 1 |
二班人數(shù)(人) | 0 | 1 | 4 | 1 | 2 | 2 |
(1)兩個(gè)班級跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:
眾數(shù) | 中位數(shù) | 平均數(shù) | 方差 | |
一班 | a | 135 | 135 | c |
二班 | 134 | b | 135 | 1.8 |
表中數(shù)據(jù)a= ,b= ,c= ;
(2)請用所學(xué)的統(tǒng)計(jì)知識(shí),從兩個(gè)角度比較兩個(gè)班跳繩比賽的成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)點(diǎn)A(m+2,3m+4)在直線l上,點(diǎn)B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點(diǎn),則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn)C在x軸上,OA=5,OC=13,如圖所示,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),則E點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn)和,與軸交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)是拋物線上第二象限內(nèi)的點(diǎn),連接,設(shè)的面積為,當(dāng)取最大值時(shí),求點(diǎn)的坐標(biāo);
(3)作射線,將射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)交拋物線于另一點(diǎn),在射線上是否存在一點(diǎn),使的周長最小.若存在,求出的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,
(1)求證:AD是⊙O的切線.
(2)若BC=8,tanB=,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為住宅區(qū)內(nèi)的兩幢樓,它們的高AB=CD=30m,兩樓之間的距離AC=24m,現(xiàn)需了解甲樓對乙樓的采光的影響情況,當(dāng)太陽光與水平線的夾角為30°時(shí),求甲樓的影子在乙樓上有多高?(精確到0.1m,≈1.41,≈1.73)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片沿對角線翻折,使點(diǎn)的對應(yīng)點(diǎn)(落在矩形所在平面內(nèi),與相交于點(diǎn),接.
(1)在圖1中,
①和的位置關(guān)系為__________________;
②將剪下后展開,得到的圖形是_________________;
(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖2所示,結(jié)論①、②是否成立,若成立,請對結(jié)論②加以證明,若不成立,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com