【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學模型,假設某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.
【答案】(1)①200;②225;(2)不能,理由見解析.
【解析】
試題(1)①根據(jù)二次函數(shù)的最值求解即可.
②根據(jù)點在曲線上點的坐標滿足方程的關(guān)系,將(5,45)代入即可求得k的值.
(2)求出時(即酒精含量等于20毫克/百毫升)對應的x值(所需時間),推出結(jié)論.
試題解析:(1)①當時,,
∴喝酒后1時血液中的酒精含量達到最大值,最大值為200毫克/百毫升.
②∵當時,,且(5,45)在反比例函數(shù)(k>0)圖象上,
∴把(5,45)代入得,解得.
(2)把代入反比例函數(shù)得.
∴喝完酒經(jīng)過11.25時(即11:20時)為早上7:20.
∴第二天早上7:20以后才可以駕駛,7:00時不能駕車去上班.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條直線AB、CD相交于點O,且∠AOC=90°,射線OM從OB開始繞O點逆時針方向旋轉(zhuǎn),速度為15°/s,射線ON同時從OD開始繞O點順時針方向旋轉(zhuǎn),速度為12°/s.兩條射線OM、ON同時運動,運動時間為t秒.(本題出現(xiàn)的角均小于平角)
(1)當t=2時,∠MON的度數(shù)為 ,∠BON的度數(shù)為 ;∠MOC的度數(shù)為
(2)當0<t<12時,若∠AOM=3∠AON-60°,試求出t的值;
(3)當0<t<6時,探究的值,問:t滿足怎樣的條件是定值;滿足怎樣的條件不是定值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=,tan∠BA3C=,計算tan∠BA4C=_____,…按此規(guī)律,寫出tan∠BAnC=_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的發(fā)現(xiàn)的規(guī)律解決下列問題
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的結(jié)論求62019+62018+…+62+6+1的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在AB上,且CD=CB,點E為BD的中點,點F為AC的中點,連結(jié)EF交CD于點M.
(1)求證:EF=AC.
(2)連接AM,若∠BAC=45°,AM+DM=15,BE=9,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
如圖1,在平面內(nèi)選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標”,這樣建立的坐標系稱為“極坐標系”.
應用:在圖2的極坐標系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標應記為( )
A.(60°,4) B.(45°,4) C.(60°,2 ) D.(50°,2 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點D,AC邊的垂直平分線l2交BC于點E,l1與l2相交于點O,連結(jié)0B,OC.若△ADE的周長為12cm,△OBC的周長為32cm.
(1)求線段BC的長;
(2)連結(jié)OA,求線段OA的長;
(3)若∠BAC=n°(n>90),直接寫出∠DAE的度數(shù) °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以點C為圓心,BC為半徑的圓交AB于點D,交AC于點E.
(1)若∠A=25°,求的度數(shù);
(2)若BC=9,AC=12,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知函數(shù)y=ax2(a≠0)的圖象上的點D,C與x軸上的點A(-5,0)和B(3,0)構(gòu)成ABCD,DC與y軸的交點為E(0,6),試求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com