【題目】如圖①,在正方形中,點(diǎn),分別在、上,且.
(1)試探索線(xiàn)段、的關(guān)系,寫(xiě)出你的結(jié)論并說(shuō)明理由;
(2)連接、,分別取、、、的中點(diǎn)、、、,四邊形是什么特殊平行四邊形?請(qǐng)?jiān)趫D②中補(bǔ)全圖形,并說(shuō)明理由.
【答案】(1)AF=DE,AF⊥DE,理由見(jiàn)詳解;(2)四邊形HIJK是正方形,補(bǔ)圖、理由見(jiàn)詳解.
【解析】
(1)根據(jù)已知利用SAS判定△DAE≌△ABF,由全等三角形的判定方法可得到AF=DE,∠BAF=∠ADE,再由直角三角形的兩個(gè)銳角互余和有兩個(gè)角互余的三角形是直角三角形可證得AF⊥DE.
(2)根據(jù)已知可得HK,KJ,IJ,HI都是中位線(xiàn),由全等三角形的判定可得到四邊形四邊都相等且有一個(gè)角是直角,從而來(lái)可得到該四邊形是正方形.
解:(1)AF=DE, AF⊥DE.
∵ABCD是正方形,
∴AB=AD,∠DAB=∠ABC=90°,
∵AE=BF,
∴△DAE≌△ABF,
∴AF=DE,∠BAF=∠ADE.
∵∠DAB=90°,
∴∠BAF+∠DAF=90°,
∴∠ADE+∠DAF=90°,
∴AF⊥DE.
∴AF=DE,AF⊥DE.
(2)四邊形HIJK是正方形.
如下圖,H、I、J、K分別是AE、EF、FD、DA的中點(diǎn),
∴HI=KJ=AF,HK=IJ=ED,
∵AF=DE,
∴HI=KJ=HK=IJ,
∴四邊形HIJK是菱形,
∵△DAE≌△ABF,
∴∠ADE=∠BAF,
∵∠ADE+∠AED=90°,
∴∠BAF+∠AED=90°,
∴∠AOE=90°
∴∠KHI=90°,
∴四邊形HIJK是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點(diǎn)E,交BC于點(diǎn)D,P為AC延長(zhǎng)線(xiàn)上一點(diǎn),且∠PBC=∠BAC,連接DE,BE.
(1)求證:BP是⊙O的切線(xiàn);
(2)若sin∠PBC=,AB=10,求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設(shè)種植娃娃菜畝,總收益為萬(wàn)元,有關(guān)數(shù)據(jù)見(jiàn)下表:
成本(單位:萬(wàn)元/畝) | 銷(xiāo)售額(單位:萬(wàn)元/畝) | |
娃娃菜 | 2.4 | 3 |
油菜 | 2 | 2.5 |
(1)求關(guān)于的函數(shù)關(guān)系式(收益 = 銷(xiāo)售額 – 成本);
(2)若計(jì)劃投入的總成本不超過(guò)萬(wàn)元,要使獲得的總收益最大,基地應(yīng)種植娃娃菜和油菜各多少畝?
(3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計(jì)劃運(yùn)送所需全部化肥,為了提高效率,實(shí)際每次運(yùn)送化肥的總量是原計(jì)劃的倍,結(jié)果運(yùn)送完全部化肥的次數(shù)比原計(jì)劃少次,求基地原計(jì)劃每次運(yùn)送多少化肥.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點(diǎn).點(diǎn)O是△ABC所在平面上的動(dòng)點(diǎn),連接OB,OC,點(diǎn)G,F分別是OB,OC的中點(diǎn),順次連接點(diǎn)D,G,F,E.
(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿(mǎn)足怎樣的數(shù)量關(guān)系?(直接寫(xiě)出答案,不需要說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在同一平面內(nèi),兩條平行景觀長(zhǎng)廊l1和l2間有一條“U”形通道,其中AB段與景觀長(zhǎng)廊l1成45°角,長(zhǎng)為20m;BC段與景觀長(zhǎng)廊垂直,長(zhǎng)為10m,CD段與景觀長(zhǎng)廊l2成60°角,長(zhǎng)為10m,求兩景觀長(zhǎng)廊間的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com