【題目】如圖,E,F(xiàn)是正方形ABCD的邊AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長為2,則線段DH長度的最小值是

【答案】 ﹣1
【解析】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,

∴△ABE≌△DCF(SAS),
∴∠1=∠2,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS),
∴∠2=∠3,
∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°,
∴∠1+∠BAH=90°,
∴∠AHB=180°﹣90°=90°,
取AB的中點(diǎn)O,連接OH、OD,
則OH=AO= AB=1,
在Rt△AOD中,OD= = = ,
根據(jù)三角形的三邊關(guān)系,OH+DH>OD,
∴當(dāng)O、D、H三點(diǎn)共線時(shí),DH的長度最小,
最小值=OD﹣OH= ﹣1.
(解法二:可以理解為點(diǎn)H是在Rt△AHB,AB直徑的半圓 上運(yùn)動(dòng)當(dāng)O、H、D三點(diǎn)共線時(shí),DH長度最。
所以答案是: ﹣1.

【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則 的值為; 的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)如圖①,將矩形紙片沿AN折疊,點(diǎn)B落在對(duì)角線AC上的點(diǎn)E處,求BN的長;

(2)如圖②,點(diǎn)M為AB上一點(diǎn),將△BCM沿CM翻折至△ECM,ME與AD相交于點(diǎn)G,CE與AD相交于點(diǎn)F,且AG=GE,求BM的長;

(3)如圖③,將矩形紙片ABCD折疊,使頂點(diǎn)B落在AD邊上的點(diǎn)E處,折痕所在直線同時(shí)經(jīng)過AB、BC(包括端點(diǎn)),設(shè)DE=x,請(qǐng)直接寫出x的取值范圍:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線 分別與x軸、y軸交于點(diǎn)B、C,且與直線 交于點(diǎn)A.

(1)分別求出點(diǎn)A、B、C的坐標(biāo);
(2)若D是線段OA上的點(diǎn),且△COD的面積為12,求直線CD的函數(shù)表達(dá)式;
(3)在(2)的條件下,設(shè)P是射線CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別是對(duì)角線BD上的兩點(diǎn),且BE=DF,連接AE、AF、CE、CF.四邊形AECF是什么樣的四邊形,說明你的道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣ x+4的圖象與x軸、y軸分別相交于點(diǎn)C、D,四邊形ABCD是正方形,反比例函數(shù)y= 的圖象在第一象限經(jīng)過點(diǎn)A.

(1)求點(diǎn)A的坐標(biāo)以及k的值:
(2)點(diǎn)P是反比例函數(shù)y= (x>0)的圖象上一點(diǎn),且△PAO的面積為21,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.

(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=10,∠BAC=90°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣4,6),(﹣1,4).

(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(3)請(qǐng)?jiān)趛軸上求作一點(diǎn)P,使△PB1C的周長最小,并寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案