【題目】如圖,已知二次函數(shù)的圖像與x軸交于AB兩點(A在點B左側(cè)),與y軸交于點C.

(1)求線段BC的長;

(2)當(dāng)0≤y≤3時,請直接寫出x的范圍;

(3)P是拋物線上位于第一象限的一個動點,連接CP,當(dāng)∠BCP90o時,求點P的坐標(biāo).

【答案】15 ;(2,;(3)點P坐標(biāo)為(,).

【解析】

1)分別求出點B和點C的坐標(biāo),再運用勾股定理即可求出BC的長;

2)求出y=0y=3時相應(yīng)的x的值,結(jié)合函數(shù)的圖象即可得到答案;

3)過點PPDy軸,設(shè)點P坐標(biāo)為(x, ),則點D坐標(biāo)為(0, ),表示出PD,CD,證明PDCCOB,得出,列方程求解即可.

(1)當(dāng)x0時,y3,

C(0,3)

OC3

當(dāng)y0,解得x1=-1,x24

A(1,0),B(4,0),

OA1,OB4

RtBOC中,BC5;

(2) 當(dāng)y0,解得x1=-1x24

當(dāng)y3,解得x10,x24

∴當(dāng)0≤y≤3時,

(3)過點PPDy

設(shè)點P坐標(biāo)為(x, ),則點D坐標(biāo)為(0, )

PDx,CD3/p>

∵∠BCP90°,

∴∠PCD+∠BCO90°

∵∠PCD+∠CPD90°

∴∠BCO=∠CPD

∵∠PDC=∠BOC90°

PDCCOB

,

xx0(舍去)

當(dāng)x時,y

∴點P坐標(biāo)為(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,將對角線AC繞對角線交點O旋轉(zhuǎn),分別交邊ADBC于點E、F,點P是邊DC上的一個動點,且保持DPAE,連接PEPF,設(shè)AEx0x3).

1)填空:PC   ,FC  。(用含x的代數(shù)式表示)

2)求△PEF面積的最小值;

3)在運動過程中,PEPF是否成立?若成立,求出x的值;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90,AC=8,BC=6,OABC的內(nèi)切圓,OA,OBO分別交于點DE,則劣弧DE的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生的身體素質(zhì),教育行政部門規(guī)定學(xué)生每天參加戶外活動的平均時間不少于1小時,為了解學(xué)生參加戶外活動的情況,對部分學(xué)生參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制作成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:

1)在這次調(diào)查中共調(diào)查了多少名學(xué)生;

2)求戶外活動時間為1.5小時的人數(shù),并補充頻數(shù)分布直方圖;

3)求戶外活動時間的眾數(shù)和中位數(shù)是多少;

4)本次調(diào)查中學(xué)生參加戶外活動的平均時間是否符合要求,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)先化簡,再求值:(a9+)÷(a1),其中a=;

(2)2cos30°+()2

(3)解方程:=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為/個的粽子,根據(jù)市場預(yù)測,該品牌粽子每個售價元時,每天能出售個,并且售價每上漲元,其銷售量將減少個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子的售價不能超過進價的

1)請你利用所學(xué)知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為元.

2)定價為多少時每天的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l與⊙O相離,OA 于點A,與⊙O相交于點P,OA5C是直線上一點,連結(jié)CP并延長交⊙O于另一點B,且ABAC

1)求證:AB是⊙O的切線;

2)若⊙O的半徑為3,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80/kg,銷售單價不低于120/kg,且不高于180/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

設(shè)yx的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.

1)寫出yx的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

2)當(dāng)銷售單價為多少時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年5月的第二個星期日即為母親節(jié),父母恩深重,恩憐無歇時,許多市民喜歡在母親節(jié)為母親送花,感恩母親,祝福母親.今年節(jié)日前夕,某花店采購了一批康乃馨,經(jīng)分析上一年的銷售情況,發(fā)現(xiàn)這種康乃馨每天的銷售量y(支)是銷售單價x(元)的一次函數(shù),已知銷售單價為7/支時,銷售量為16支;銷售單價為8/支時,銷售量為14支.

1)求這種康乃馨每天的銷售量y(支)關(guān)于銷售單價x(元/支)的一次函數(shù)解析式;

2)若按去年方式銷售,已知今年這種康乃馨的進價是每支5元,商家若想每天獲得42元的利潤,銷售單價要定為多少元?

3)在(2)的條件下,當(dāng)銷售單價x為何值時,花店銷售這種康乃馨每天獲得的利潤最大?并求出獲得的最大利潤.

查看答案和解析>>

同步練習(xí)冊答案