【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,連接BD,CE,BD和CE相交于點(diǎn)F,若△ABC不動(dòng),將△ADE繞點(diǎn)A任意旋轉(zhuǎn)一個(gè)角度.
(1)求證:△BAD≌△CAE.
(2)如圖①,若∠BAC=∠DAE=90°,判斷線段BD與CE的關(guān)系,并說(shuō)明理由;
(3)如圖②,若∠BAC=∠DAE=60°,求∠BFC的度數(shù);
(4)如圖③,若∠BAC=∠DAE= ,直接寫出∠BFC的度數(shù)(不需說(shuō)明理由)
【答案】(1)證明見解析;(2)BD⊥CE,理由見解析;(3);(4)
【解析】試題分析:(1)由等邊三角形的性質(zhì)得出AB=AC,AD=AE,∠BAC=∠EAD,從而得出∠BAD=∠CAE,即可得出△BAD≌△CAE.
(2)判定BD與CE的關(guān)系,可以根據(jù)角的大小來(lái)判定.由∠BAC=∠DAE可得∠BAD=∠CAE,進(jìn)而得△BAD≌△CAE,所以∠CBF+∠BCF=∠ABC+∠ACB.再由∠BAC=∠DAE=90°,所以BD⊥CE.
(3)根據(jù)①的∠CBF+∠BCF=∠ABC+∠ACB,所以∠BFC=∠BAC,再由∠BAC=∠DAE=60°,所以∠BFC=60°
(4)根據(jù)②∠BFC=∠BAC,所以∠BFC=α
試題解析:(1)證明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE
在△BAD與△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,
∴△BAD≌△CAE(SAS),
(2)BD與CE相互垂直,BD=CE.
由(1)知,△BAD≌△CAE(SAS),
∴∠ABD=∠ACE,BD=CE,
∵∠BAC=90°,
∴∠CBF+∠BCF=∠ABC+∠ACB=90°,
∴∠BFC=90°
∴BD⊥CE.
(3)由題①得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=60°,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=60°.
(4)由題(1)得∠CBF+∠BCF=∠ABC+∠ACB,
∵∠BAC=∠DAE=α,
∴∠CBF+∠BCF=∠ABC+∠ACB,
∴∠BFC=∠BAC
∴∠BFC=α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;
(3)結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時(shí)兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于, 兩點(diǎn),交軸于點(diǎn),直線經(jīng)過(guò)坐標(biāo)原點(diǎn),與拋物線的一個(gè)交點(diǎn)為,與拋物線的對(duì)稱交于點(diǎn),連接,點(diǎn), 的坐標(biāo)分別為, .
()求拋物線的解析式,并分別求出點(diǎn)和點(diǎn)的坐標(biāo).
()在拋物線上是否存在點(diǎn),使≌,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點(diǎn)D2,依此類推,∠ABD4與∠ACD4的角平分線交于點(diǎn)D5,則∠BD5C的度數(shù)是 ( )
A. 56° B. 60° C. 68° D. 94°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( 。
A.aa=a2
B.2a+a=3a
C.(a3)2=a5
D.a3÷a-1=a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生數(shù)學(xué)的平時(shí)成績(jī)、期中考試成績(jī)、期末考試成績(jī)分別是84分、80分、90分。如果按平時(shí)成績(jī):期中考試成績(jī):期末考試成績(jī)=3:3:4進(jìn)行總評(píng),那么他本學(xué)期數(shù)學(xué)總評(píng)分應(yīng)為______分。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com