【題目】為方便市民通行某廣場計劃對坡角為30°,坡長為60 米的斜坡AB進行改造,在斜坡中點D 處挖去部分坡體(陰影表示),修建一個平行于水平線CA 的平臺DE 和一條新的斜坡BE

(1)若修建的斜坡BE 的坡角為36°,則平臺DE的長約為多少米?

(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?

(結果取整數(shù),參考數(shù)據(jù):sin 36°06,cos 36°08,tan 36°07,17)

【答案】(1)4米;(2)45米

【解析】

試題分析:(1)根據(jù)題意得出,BEF=36°,進而得出EF的長,即可得出答案;(2)利用在RtDPA中,DP=AD以及PA=ADcos30°進而得出DM的長,利用HM=DMtan30°得出即可

試題解析:(1)修建的斜坡BE的坡角(即BEF)為36°,∴∠BEF=36°,∵∠DAC=BDF=30°AD=BD=30BF=BD=15,DF=15,EF==故DE=DF-EF=15-4(米);

(2)過點D作DPAC垂足為P在RtDPA中,DP=AD=×30=15,PA=ADcos30°=×30=15,在矩形DPGM中,MG=DP=15,DM=PG=15+27,在RtDMH中,HM=DMtan30°=×(15+27)=15+9GH=HM+MG=15+15+945米答:建筑物GH高約為45米

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點E是對角線上一點,連接.過點E的延長線于點F.若,則正方形的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了讓更多的居民享受免費的體育健身服務,重慶市將陸續(xù)建成多個社區(qū)健身點,某社區(qū)為了了解健身點的使用情況,現(xiàn)隨機調查了部分社區(qū)居民,將調查結果分成四類,A:每天健身;B:經(jīng)常健身;C:偶爾健身;D:從不健身;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖,解答下列問題:

1)本次調查中,一共調查了________名社區(qū)居民,其中a=________;請將折線統(tǒng)計圖補充完整;

2)為了吸引更多社區(qū)居民參加健身,健身點準備舉辦一次健身講座培訓,為此,想從被調查的A類和D類居民中分別選取一位在講座上進行交流,請用列表法或畫樹狀圖的方法列出所有等可能的結果,并求出所選兩位居民恰好是一位男性和一位女性的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形,上有點D,分別以為邊作等邊和等腰,邊、交于點H,點F延長線上且,連接.求證:

1

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點B落在點E處,AECD于點F,連接DE

1)求證:△DEC≌△EDA;

2)求DF的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )

A. π-4 B. π-1 C. π-2 D. -2

【答案】C

【解析】試題解析:∵∠BAC=45°,

∴∠BOC=90°,

∴△OBC是等腰直角三角形,

OB=2,

∴△OBCBC邊上的高為:OB=,

BC=2

S陰影=S扇形OBC﹣SOBC=.

故選C.

型】單選題
束】
10

【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為(  )

A.8m B.6.4m C.4.8m D.10m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,延長線上一點,點上.且

1)求證:;

2)若,則度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形中,是矩形內(nèi)一動點,且,則的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD不添加任何字母和數(shù)字,請你再添加一個條件∠1=2成立(要求給出三個答案),并選擇其中一種情況加以證明.

條件1________________________________;

條件2________________________________;

條件3________________________________.

查看答案和解析>>

同步練習冊答案