【題目】《國家學生體質(zhì)健康標準》規(guī)定:體質(zhì)測試成績達到90.0分及以上的為優(yōu)秀;達到80.0分至89.9分的為良好;達到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學生體質(zhì)健康狀況,從該校九年級學生中隨機抽取了10%的學生進行體質(zhì)測試,測試結果如下面的統(tǒng)計表和扇形統(tǒng)計圖所示。

各等級學生平均分統(tǒng)計表

等級

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級學生人數(shù)分布扇形統(tǒng)計圖

1)扇形統(tǒng)計圖中不及格所占的百分比是  ;

2)計算所抽取的學生的測試成績的平均分;

3)若所抽取的學生中所有不及格等級學生的總分恰好等于某一個良好等級學生的分數(shù),請估計該九年級學生中約有多少人達到優(yōu)秀等級。

【答案】14%; 284.1;(3)優(yōu)秀的學生有260 .

【解析】

(1)1減去優(yōu)秀、良好、及格的百分比即可得;

(2)利用加權平均數(shù)公式進行計算即可;

(3)設總?cè)藬?shù)為n個,則不及格學生的總分為41.3×n×4%,根據(jù)良好分數(shù)的范圍可得關于n的不等式組,解不等式組可求得n的范圍,繼而根據(jù)學生數(shù)為整數(shù)即可求得答案.

(1)1-52%-26%-18%=4%

故答案為:4%;

(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1,

答:所抽取學生的測試成績的平均分為84.1分;

(3)設總?cè)藬?shù)為n個,則不及格學生的總分為41.3×n×4%分,由題意得

80.0 ≤ 41.3×n×4%≤89.9,

解得:48≤n≤54

又因為 4%n為整數(shù),所以n=50,

所以優(yōu)秀的學生有52%×50÷10%=260 .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學興趣小組活動中,李燕和劉凱兩位同學設計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針所指區(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針所指區(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針所指區(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年四月份,某校在孝感市爭創(chuàng)全國文明城市 活動中,組織全體學生參加了弘揚孝感文化,爭做文明學生知識競賽,賽后隨機抽取了部分參賽學生的成績,按得分劃分 六個等級,并繪制成如下兩幅完整的統(tǒng)計圖.

根據(jù)表提供的,解答下列問題:

(1)本次抽樣調(diào)查樣本容量為 表中: , 扇形統(tǒng)計圖中, 等級對應圓心角 等于 ;(4分=1+1+1

(2)該校決定從本次抽取 等級學生(為甲、乙、丙、。┲隨機選擇 名成為學校文明講志愿者,請你用列表法或畫樹狀的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,OPOAAB于點P,過點B的直線交OP的延長線于點C,且CPCB

1)求證:BC是⊙O的切線;

2)若OA5,OP3,求CB的長;

3)設AOP的面積是S1,BCP的面積是S2,且.若⊙O的半徑為4,BP,求tanCBP

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙A的半徑為1,圓心A點的坐標為(21).直線OM是一次函數(shù)y=x的圖象.將直線OM沿x軸正方向平行移動.

1)填空:直線OMx軸所夾的銳角度數(shù)為 °;

2)求出運動過程中⊙A與直線OM相切時的直線OM的函數(shù)關系式;(可直接用(1)中的結論)

3)運動過程中,當⊙A與直線OM相交所得的弦對的圓心角為90°時,直線OM的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,把線段沿射線方向平移(點始終在射線上)至位置,直線與直線交于點,又聯(lián)結與直線交于點.

1)當時,求證:;

2)當點位于線段上時(不含端點、),設,,試求關于的函數(shù)解析式,并寫出定義域;

3)當以、、為頂點的三角形與相似時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經(jīng)過點CD、F,與AD相交于點G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點D在邊BC上,BD2CD(圖4).把ABC繞著點D逆時針旋轉(zhuǎn)m0m180)度后,如果點B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,利用一面長為34米的墻,用鐵柵欄圍成一個矩形自行車場地ABCD,在ABBC邊各有一個2米寬的小門(不用鐵柵欄).設矩形ABCD的邊AD長為x米,AB長為y米,矩形的面積為S平方米,且xy

1)若所用鐵柵欄的長為40米,求yx的函數(shù)關系式,并直接寫出自變量x的取值范圍;

2)在(1)的條件下,求Sx的函數(shù)關系式,并求出怎樣圍才能使矩形場地的面積為192平方米?

查看答案和解析>>

同步練習冊答案