【題目】在⊙O中,AB為直徑,C為⊙O上一點.
(1)如圖1.過點C作⊙O的切線,與AB的延長線相交于點P,若∠CAB=27°,求∠P的大。
(2)如圖2,D為上一點,且OD經(jīng)過AC的中點E,連接DC并延長,與AB的延長線相交于點P,若∠CAB=10°,求∠P的大。
【答案】(1)36°;(2)30°.
【解析】
試題分析:(1)連接OC,首先根據(jù)切線的性質(zhì)得到∠OCP=90°,利用∠CAB=27°得到∠COB=2∠CAB=54°,然后利用直角三角形兩銳角互余即可求得答案;
(2)根據(jù)E為AC的中點得到OD⊥AC,從而求得∠AOE=90°﹣∠EAO=80°,然后利用圓周角定理求得∠ACD=∠AOD=40°,最后利用三角形的外角的性質(zhì)求解即可.
試題解析:(1)如圖,連接OC,∵⊙O與PC相切于點C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;
(2)∵E為AC的中點,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一個外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以ABCO的頂點O為原點,邊OC所在直線為x軸,建立平面直角坐標系,頂點A、C的坐標分別是(2,4)、(3,0),過點A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小馬自駕私家車從A地到B地,駕駛原來的燃油汽車所需的油費108元,駕駛新購買的純電動汽車所需電費27元.已知行駛1千米,原來燃油汽車所需的油費比新購買的純電動汽車所需的電費多0.54元,求新購買的純電動汽車每行駛1千米所需的電費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學舉行“感恩資助,立志成才”演講比賽,根據(jù)初賽成績在七,八年級分別選出10名同學參加決賽,這些選手的決賽成績?nèi)鐖D所示:
根據(jù)圖和下表提供的信息,解答下列問題:
(1)請你把下邊的表格填寫完整;
成績統(tǒng)計 | 眾數(shù) | 平均數(shù) | 方差 |
七年級 | 85.7 | 39.61 | |
八年級 | 85.7 | 27.81 |
(2)考慮平均數(shù)與方差,你認為哪年級的團體成績更好些;
(3)假設(shè)在每個年級的決賽選手中分別選出3人參加總決賽,你認為哪個年級的實力更強一些,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com