【題目】某射擊隊準(zhǔn)備從甲、乙兩名隊員中選取一名隊員代表該隊參加比賽,特為甲、乙兩名隊員舉行了一次選拔賽,要求這兩名隊員各射擊10次.比賽結(jié)束后,根據(jù)比賽成績情況,將甲、乙兩名隊員的比賽成績制成了如下的統(tǒng)計圖(表):
甲隊員的成績統(tǒng)計表
成績(單位:環(huán)) | 7 | 8 | 9 | 10 |
次數(shù)(單位:次) | 5 | 1 | 2 | 2 |
(1)在圖1中,求“8環(huán)”所在扇形的圓心角的度數(shù);
(2)經(jīng)過整理,得到的分析數(shù)據(jù)如表,求表中的a、b、c的值.
隊員 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 7.5 | 7 | c |
乙 | a | b | 7 | 1 |
(3)根據(jù)甲、乙兩名隊員的成績情況,該射擊隊準(zhǔn)備選派乙參加比賽,請你寫出一條射擊隊選派乙的理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點E在BD上;
(1)求證:FD=AB;(2)連接AF,求證:∠DAF=∠EFA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明想測量斜坡旁一棵垂直于地面的樹的高度,他們先在點處測得樹頂的仰角為,然后在坡頂測得樹頂的仰角為,已知斜坡的長度為,斜坡頂點到地面的垂直高度,則樹的高度是( )
A. 20B. 30C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點A的坐標(biāo)為(3,6),點B(6,0),C是線段OB上一動點(不與O,B重合),過C,O兩點的二次函數(shù)y1和過C,B兩點的二次函數(shù)y2的圖像開口均向下,它們的頂點分別為OA,AB邊上的E,F兩點,點C從點O到點B運動過程中,陰影部分的面積大小變化情況是( )
A.不變B.先增大再減小C.先減小再增大D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點E是直線CD上一動點,以BE為斜邊向上方作等腰直角△BEF,連接AF,試求線段AF與DE的數(shù)量關(guān)系.
(1)小可同學(xué)進(jìn)行探索:①將點E的位置特殊化,發(fā)現(xiàn)DE= ___ AF;
②點E運動過程中,∠BAF= ___ ;(填度數(shù))
(2)如圖1,當(dāng)點E在線段CD上時,證明AF與DE的數(shù)量關(guān)系;
(3)如圖2,當(dāng)邊EF被對角線BD平分時,求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)為常數(shù),),當(dāng)時,.
求;
求此拋物線與軸、軸交點;
畫出函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn)
如圖①,在五邊形中,,,試猜想之間的數(shù)量關(guān)系,小明經(jīng)過仔細(xì)思考,得到如下解題思路:將繞點逆時針旋轉(zhuǎn)90°至,由,得,即點三點共線,易證,故之間的數(shù)量關(guān)系是________;
(2)類比探究
如圖②,在四邊形中,,,點分別在邊的延長線上,,連接,試猜想之間的數(shù)量關(guān)系,并給出證明;
(3)拓展延伸
如圖③,在中,,,點均在邊上,且,若,則的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,已知,為上一點,且,的平分線交于點,是AD上的動點,連結(jié),,則的最小值是( )
A. 8B. 10C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,用籬笆靠墻圍成矩形花圃ABCD ,墻可利用的最大長度為15m,一面利用舊墻 ,其余三面用籬笆圍,籬笆總長為24m,設(shè)平行于墻的BC邊長為x m
(1)若圍成的花圃面積為40m2時,求BC的長
(2)如圖2,若計劃在花圃中間用一道籬笆隔成兩個小矩形,且圍成的花圃面積為50m2,請你判斷能否成功圍成花圃,如果能,求BC的長?如果不能,請說明理由.
(3)如圖3,若計劃在花圃中間用n道籬笆隔成小矩形,且當(dāng)這些小矩形為正方形時,請列出x、n滿足的關(guān)系式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com