【題目】已知一次函數y1=2x-3,y2=-x+6在同一直角坐標系中的圖象如圖所示,它們的交點坐標為C(3,3).
(1)根據圖象指出x為何值時,y1>y2;x為何值時,y1<y2.
(2)求這兩條直線與x軸所圍成的△ABC的面積.
科目:初中數學 來源: 題型:
【題目】已知:如圖數軸上兩點A、B所別應的分別為﹣3、1,點P在數軸上從點A出發(fā)以每秒鐘2個單位的長度的速度向右運動,點Q在數軸上從點B出發(fā)以每秒鐘1個單位長度的速度向左運動,設點P的運動時間為t秒.
(1)直接寫出線段AB的中點所對應的數及t秒后點P所對應的數.
(2)若點P和點Q同時出發(fā),求點P和點Q相遇時的位置所對應的數;
(3)若點P比點Q遲1秒鐘出發(fā),問點P出發(fā)幾秒后,點P和點Q剛好相距1個單位長度.并問此時數軸上是否存在一個點C,使其到點A、點P和點Q這三點的距離和最?若存在,直接寫出點C所對應的數;若不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知 A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2.
求:(1)2A﹣3B.
(2)若|2x﹣3|=1,y2=9,|x﹣y|=y﹣x,求 2A﹣3B 的值.
(3)若 x=2,y=﹣4 時,代數式 ax3by+5=17,那么當 x=﹣4,y=﹣時,求代 數式 3ax﹣24by3+6 的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A、B、C在數軸上表示的數分別為a、b、c,且OA+OB=OC,則下列結論中:
①abc<0;②a(b+c)>0;③a﹣c=b;④ .
其中正確的個數有 ( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2+bx+c與x軸只有一個交點,且圖象過A(x1 , m)、B(x1+n,m)兩點,則m、n的關系為( 。
A.m= n
B.m= n
C.m=
D.m=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某大型企業(yè)為了保護環(huán)境,準備購買A、B兩種型號的污水處理設備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設備的單價;
(2)經核實,一臺A型設備一個月可處理污水220噸,一臺B型設備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知正方形的邊長為4,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行,若乙的速度是甲的速度的3倍,則它們第2018次相遇在邊 ( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是矩形ABCD的邊AD上的一動點,矩形的兩條邊AB、BC的長分別是6和8,則點P到矩形的兩條對角線AC和BD的距離之和是( 。
A.4.8
B.5
C.6
D.7.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在現今“互聯網+”的時代,密碼與我們的生活已經緊密相連,密不可分,而諸如“123456”、生日等簡單密碼又容易被破解,因此利用簡單方法產生一組容易記憶的密碼就很有必要了,有一種用“因式分解”法產生的密碼、方便記憶,其原理是:將一個多項式分解因式,如多項式:因式分解的結果為,當時,此時可以得到數字密碼171920.
(1)根據上述方法,當時,對于多項式分解因式后可以形成哪些數字密碼?(寫出三個)
(2)若一個直角三角形的周長是24,斜邊長為10,其中兩條直角邊分別為x、y,求出一個由多項式分解因式后得到的密碼(只需一個即可);
(3)若多項式因式分解后,利用本題的方法,當時可以得到其中一個密碼為242834,求m、n的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com