【題目】某飲料經(jīng)營部每天的固定成本為200元,其銷售的飲料每瓶進價為5元.銷售單價與日平均銷售的關(guān)系如下:

銷售單價(元)

6

6.5

7

7.5

8

8.5

9

日平均銷售量(瓶)

480

460

440

420

400

380

360

(1)若記銷售單價比每瓶進價多x元,則銷售量為_____(用含x的代數(shù)式表示);

求日均毛利潤(日均毛利潤=(每瓶售價-每瓶進價)×日均銷售量-固定成本)yx之間的函數(shù)關(guān)系式.

(2)若要使日均毛利潤達到1400元,則銷售單價應(yīng)定為多少元?

(3)若要使日均毛利潤達到最大,銷售單價應(yīng)定為多少元?最大日均毛利潤為多少元?

【答案】(1)520﹣40x,y=﹣40x2+520x﹣2000x13;(2)10元;(3)銷售單價定為11.5元,日均毛利潤達到最大值1490.

【解析】試題分析:

1觀察表格中的數(shù)據(jù)可知,當銷售價格每上漲0.5元時,銷售量會減少20瓶,由此可得若記銷售單價比每瓶進價多元,則銷售量為: ,化簡即可得所求答案;由日均毛利潤=(每瓶售價-每瓶進價)×日均銷售量-固定成本,列式即可得到間的函數(shù)關(guān)系式;

2)由(1中所得函數(shù)解析式可列出對應(yīng)的方程,解方程即可得到所求銷售單價;

3)把(1)中所得函數(shù)解析式配方化為頂點式,結(jié)合的取值范圍可得所求答案;

試題解析

解:(1480=52040x

日均毛利潤y=x(520﹣40x)﹣200=﹣40x2+520x﹣200(0x13);

(2)y=1400時,即﹣40x2+520x﹣200=1400,

x1=5,x2=8滿足0x13,

此時銷售單價為5+5=10元或8+5=13元,日均毛利潤達到1400元;

(3)y=﹣40x2+520x﹣200

=40x2+1490,

a=400013,

∴當x=時,即銷售單價定為11.5元,日均毛利潤達到最大值1490元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為中垂三角形,例如圖1,圖2,圖3中,AFBEABC的中線,AFBE,垂足為P,像ABC這樣的三角形均為中垂三角形,設(shè)BC=a,AC﹣bAB=c

【特例探索】

1)如圖1,當∠ABE=45°c=2時,a=   b=   ;如圖2,當∠ABE=30°c=4時,a=   ,b=   

【歸納證明】

2)請你觀察(1)中的計算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,請利用圖3證明你發(fā)現(xiàn)的關(guān)系式;

【拓展應(yīng)用】

3)如圖4,在ABCD中,點EF,G分別是AD,BCCD的中點,BEEGAD=2,AB=3.求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】善于思考的小鑫同學(xué),在一次數(shù)學(xué)活動中,將一副直角三角板如圖放置,,在同一直線上,且,,,量得,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,EAB的中點,FAD上一點,且AF=AD,試判斷△EFC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點D,連結(jié)AD并延長,與BC相交于點E。

(1)若BC=,CD=1,求⊙O的半徑;

(2)取BE的中點F,連結(jié)DF,求證:DF是⊙O的切線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點,∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅同學(xué)要測量,兩地的距離,但,之間有一水池,不能直接測量,于是她在同一水平面上選取了一點,點可直接到達兩地.她測量得到米,米,.請你幫助小紅同學(xué)求出,兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(11),第2次接著運動到點(2,0),第3次接著運動到點(3,2),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標是(  )

A. 2018,1B. 2018,0C. 2019,2 D. 2019,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點O的正前方10m處起腳射門,足球沿拋物線飛向球門中心線;當足球飛離地面高度為3m時達到最高點,此時足球飛行的水平距離為6m.已知球門的橫梁高為2.44m.

(1)在如圖所示的平面直角坐標系中,問此飛行足球能否進球門?(不計其它情況)

(2)守門員乙站在距離球門2m處,他跳起時手的最大摸高為2.52m,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠才能阻止球員甲的射門?

查看答案和解析>>

同步練習冊答案