【題目】為了響應(yīng)“足球進(jìn)校國”的目標(biāo),興義市某學(xué)校開展了多場足球比賽在某場比賽中,一個足球被從地面向上踢出,它距地面的高度h(m)可以用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后經(jīng)過的時間,v0(m/s)是足球被踢出時的速度,如果要求足球的最大高度達(dá)到20m,那么足球被踢出時的速度應(yīng)該達(dá)到( 。
A. 5m/s B. 10m/s C. 20m/s D. 40m/s
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,1),在x軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的點(diǎn)P的個數(shù)共有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,點(diǎn)在直線上,將沿射線方向平移,使點(diǎn)與點(diǎn)重合,得到(點(diǎn)、分別與點(diǎn)、對應(yīng)),線段與軸交于點(diǎn),線段,分別與直線交于點(diǎn),.
(1)求點(diǎn)的坐標(biāo);
(2)如圖②,連接,四邊形的面積為__________(直接填空);
(3)過點(diǎn)的直線與直線交于點(diǎn),當(dāng)時,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,的面積為8,,,點(diǎn)的坐標(biāo)是.
(1)求三個頂點(diǎn)、、的坐標(biāo);
(2)若點(diǎn)坐標(biāo)為,連接,,求的面積;
(3)是否存在點(diǎn),使的面積等于的面積?如果存在,請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點(diǎn),AD與BE相交于點(diǎn)P,那么四邊形PDCE的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn).
(1)求這個二次函數(shù)y=x2+bx+c的解析式.
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo).
(3)如果點(diǎn)P在運(yùn)動過程中,能使得以P、C、B為頂點(diǎn)的三角形與△AOC相似,請求出此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com