【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類似地我們可以用折紙的方法求方程的一個(gè)正根.如圖,一張邊長(zhǎng)為1的正方形的紙片,先折出的中點(diǎn),再折出線段,然后通過(guò)沿線段折疊使落在線段上,得到點(diǎn)的新位置,并連接、,此時(shí),在下列四個(gè)選項(xiàng)中,有一條線段的長(zhǎng)度恰好是方程的一個(gè)正根,則這條線段是(

A.線段B.線段C.線段D.線段

【答案】B

【解析】

設(shè)ND=,由折疊可得DN=NP=,則NC=,根據(jù)勾股定理可得NP2+PH2=CN2+CH2,列出方程求出的值,進(jìn)而可得DN的長(zhǎng)度可以用來(lái)表示方程的一個(gè)正根.

解方程,得:

∴方程的一個(gè)正根為,

由折疊可知:
AD=AP=AB=1,CH=BH=
A選項(xiàng)不符合題意;

設(shè)ND=,
由折疊可知:
DN=NP=,則NC=,

AH=
PH=AH-AP=,

∵∠NPH=D=C=90°
NP2+PH2=CN2+CH2,

,

解得:,

DN,

B選項(xiàng)符合題意;

NC=,

C選項(xiàng)不符合題意;

RtNHP中,∠BCG=90,

NH>NP=,

D選項(xiàng)不符合題意;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E,H在矩形ABCDAD邊上,點(diǎn)F,GBC邊上,將矩形ABCD沿EF,GH折疊,使點(diǎn)B和點(diǎn)C落在AD邊上同一點(diǎn)P處.折疊后,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A',點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D',若∠FPG90°A'E3,D'H1,則矩形ABCD的周長(zhǎng)等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線x軸交于點(diǎn),且.拋物線與y軸交于點(diǎn)C,將點(diǎn)C向上移動(dòng)1個(gè)單位得到點(diǎn)D

1)求拋物線對(duì)稱軸;

2)求點(diǎn)D縱坐標(biāo)(用含有a的代數(shù)式表示);

3)已知點(diǎn),若拋物線與線段只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax+2)(x4)(a為常數(shù),且a0)與x軸從左至右依次交于A,B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過(guò)點(diǎn)B的直線y=﹣x+拋物線的另一交點(diǎn)為D,且點(diǎn)D的橫坐標(biāo)為﹣5

1)求拋物線的函數(shù)表達(dá)式;

2)該二次函數(shù)圖象上有一點(diǎn)Px,y)使得SBCDSABP,求點(diǎn)P的坐標(biāo);

3)設(shè)F為線段BD上一點(diǎn)(不含端點(diǎn)),連接AF,求2AF+DF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)Aa,3)和B-3,1).

1)求kb的值.

2)點(diǎn)Px軸上一點(diǎn),連接PAPB,當(dāng)PAB的周長(zhǎng)最小時(shí)求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某社會(huì)團(tuán)體準(zhǔn)備購(gòu)進(jìn)甲、乙兩種防護(hù)服捐給一線抗疫人員,經(jīng)了解,購(gòu)進(jìn)5件甲種防護(hù)服和4件乙種防護(hù)服需要2萬(wàn)元,購(gòu)進(jìn)10件甲種防護(hù)服和3件乙種防護(hù)服需要3萬(wàn)元.

1)甲種防護(hù)服和乙種防護(hù)服每件各多少元?

2)實(shí)際購(gòu)買時(shí),發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購(gòu)買甲種防護(hù)服超過(guò)20件時(shí),超過(guò)的部分按原價(jià)的8折付款,乙種防護(hù)服沒(méi)有優(yōu)惠;方案二:兩種防護(hù)服都按原價(jià)的9折付款,該社會(huì)團(tuán)體決定購(gòu)買件甲種防護(hù)服和30件乙種防護(hù)服.

①求兩種方案的費(fèi)用與件數(shù)的函數(shù)解析式;

②請(qǐng)你幫該社會(huì)團(tuán)體決定選擇哪種方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形.... 按如圖的方式放置.點(diǎn)和點(diǎn)分別落在直線軸上.拋物線過(guò)點(diǎn),且頂點(diǎn)在直線上,拋物線過(guò)點(diǎn),且頂點(diǎn)在直線上,...按此規(guī)律,拋物線,過(guò)點(diǎn), 且頂點(diǎn)也在直線上,其中拋物線交正方形的邊于點(diǎn),拋物線交正方形的邊于點(diǎn)(其中為正整數(shù))

1)直接寫出下列點(diǎn)的坐標(biāo): , ;

2)寫出拋物線的解析式,并寫出拋物線的解析式求解過(guò)程,再猜想拋物線的頂點(diǎn)坐標(biāo);

3)設(shè),試判斷的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形先向右平移1個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到正方形,形成了中間深色的正方形及四周淺色的邊框,已知正方形的面積為16,則四周淺色邊框的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點(diǎn)D,且∠CBE=2C

1)求證:BE與⊙O相切;

2)若DF=9tanC=,求直徑AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案