【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,
∠AOC=∠BCO=90°,經過點O的直線l將四邊形分成兩部分,直線l與OC所成的角設為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點C落在點D處,我們把這個操作過程記為FZ[θ,a].
(理解)
若點D與點A重合,則這個操作過程為FZ[45°,3];
(嘗試)
(1)若點D恰為AB的中點(如圖2),求θ;
(2)經過FZ[45°,a]操作,點B落在點E處,若點E在四邊形OABC的邊AB上,求出a的值;若點E落在四邊形OABC的外部,直接寫出a的取值范圍.
【答案】(1)θ =30°;(2)當0<a<5時,點E落在四邊形0ABC的外部.
【解析】
(1)先根據(jù)ASA定理得出△BCD≌△AFD,故可得出CD=FD,即點D為Rt△COF斜邊CF的中點,由折疊可知,OD=OC,故OD=OC=CD,△OCD為等邊三角形,∠COD=60°,根據(jù)等邊三角形三線合一的性質可得出結論;(2)根據(jù)點E四邊形0ABC的邊AB上可知AB⊥直線l,根據(jù)由折疊可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直線l,得出△ADE為等腰直角三角形,故可得出OA的長,由此可得出結論.
(1)連接CD并延長,交OA延長線于點F.
在△BCD與△AFD中,
,
∴△BCD≌△AFD(ASA).
∴CD=FD,即點D為Rt△COF斜邊CF的中點,
∴OD=CF=CD.
又由折疊可知,OD=OC,
∴OD=OC=CD,
∴△OCD為等邊三角形,∠COD=60°,
∴θ=∠COD=30°;
(2)∵點E四邊形OABC的邊AB上,
∴AB⊥直線l
由折疊可知,OD=OC=3,DE=BC=2.
∵θ=45°,AB⊥直線l,
∴△ADE為等腰直角三角形,
∴AD=DE=2,
∴OA=OD+AD=3+2=5,
∴a=5;
由圖可知,當0<a<5時,點E落在四邊形0ABC的外部.
科目:初中數(shù)學 來源: 題型:
【題目】已知a1+a2+…+a30+a31與b1+b2+…+b30+b31均為等差級數(shù),且皆有31項.若a2+b30=29,a30+b2=﹣9,則此兩等差級數(shù)的和相加的結果為多少?( 。
A.300
B.310
C.600
D.620
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點O旋轉150°后得到△A1B1O,則點A1坐標為( )
A.(﹣1,﹣ )
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點D順時針旋轉一定的角度,DF仍與線段AC相交于點F.求證:BE+CF= AB.
(3)如圖3,若∠EDF的兩邊分別交AB,AC的延長線于E、F兩點,(2)中的結論還成立嗎?如果成立,請證明;如果不成立,請直接寫出線段BE,AB,CF之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】食品安全是關乎民生的重要問題,在食品中添加過量的添加劑對人體健康有害,但適量的添加劑對人體健康無害而且有利于食品的儲存和運輸.為提高質量,做進一步研究,某飲料加工廠需生產A,B兩種飲料共100瓶,需加入同種添加劑270克,其中A飲料每瓶需加添加劑2克,B飲料每瓶需加添加劑3克,飲料加工廠生產了A,B兩種飲料各多少瓶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點順時針旋轉90°,得到△A′B′C′,連接AA′,若∠1=22°,則∠B的度數(shù)是( )
A.67°
B.62°
C.82°
D.72°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰△ABC中,AD⊥BC于點D,且AD= BC,則△ABC底角的度數(shù)為( )
A.45°
B.75°
C.45°或15°或75°
D.60°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com