【題目】某高中學(xué)校為高一新生設(shè)計(jì)的學(xué)生板凳的正面視圖如圖所示,其中BA=CDBC=20cm,BCEF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長?(材質(zhì)及其厚度等暫忽略不計(jì)).

【答案】44cm

【解析】

解:如圖,

設(shè)BMAD相交于點(diǎn)H,CNAD相交于點(diǎn)G,

由題意得,MH=8cm,BH=40cm,則BM=32cm

四邊形ABCD是等腰梯形,AD=50cmBC=20cm,

∵EF∥CD,∴△BEM∽△BAH

,即,解得:EM=12

∴EF=EMNFBC=2EMBC=44cm).

答:橫梁EF應(yīng)為44cm

根據(jù)等腰梯形的性質(zhì),可得AH=DG,EM=NF,先求出AH、GD的長度,再由△BEM∽△BAH,可得出EM,繼而得出EF的長度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)課改,王老師把班級(jí)里60名學(xué)生分成若干小組,每小組只能是5人或6人,則有幾種分組方案( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,過點(diǎn)OOC⊥OA,OC交于ABP,且CP=CB

1)求證:BC⊙O的切線;

2)已知∠BAO=25°,點(diǎn)Q是弧AmB上的一點(diǎn).

①求∠AQB的度數(shù);

②若OA=18,求弧AmB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(發(fā)現(xiàn))如圖,點(diǎn)EF分別在正方形ABCD的邊BC,CD上,連接EF.因?yàn)?/span>AB=AD,所以把ΔABEA逆時(shí)針旋轉(zhuǎn)90°至ΔADG,可使ABAD重合.因?yàn)椤?/span>CDA=B=90°,所以∠FDG=180°,所以F、DG共線.

如果__________(填一個(gè)條件),可得ΔAEF≌ΔAGF.經(jīng)過進(jìn)一步研究我們可以發(fā)現(xiàn):當(dāng)BEEF,FD滿足__________時(shí),∠EAF=45°.

(應(yīng)用)

如圖,在矩形ABCD中,AB=6,AD=m,點(diǎn)E在邊BC上,且BE=2

1)若m=8,點(diǎn)F在邊DC上,且∠EAF=45°(如圖),求DF的長;

2)若點(diǎn)F在邊DC上,且∠EAF=45°,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),PAB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。

A. 3 B. 3 C. 4 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司推出一款產(chǎn)品,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個(gè))與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系.關(guān)于銷售單價(jià),日銷售量,日銷售利潤的幾組對(duì)應(yīng)值如下表:

銷售單價(jià)x(元)

85

95

105

115

日銷售量y(個(gè)

175

125

75

m

日銷售利潤w(元)

875

1875

1875

875

(注:日銷售利潤=日銷售量×(銷售單價(jià)﹣成本單價(jià)))

(1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍)及m的值;

(2)根據(jù)以上信息,填空:

該產(chǎn)品的成本單價(jià)是   元,當(dāng)銷售單價(jià)x=   元時(shí),日銷售利潤w最大,最大值是   元;

(3)公司計(jì)劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預(yù)計(jì)在今后的銷售中,日銷售量與銷售單價(jià)仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價(jià)為90元時(shí),日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價(jià)應(yīng)不超過多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑,于點(diǎn),連接于點(diǎn),過點(diǎn)的切線交于點(diǎn),連接交于點(diǎn)

1)求證:

2)連接并延長,交于點(diǎn),填空:

①當(dāng)的度數(shù)為_________時(shí),四邊形為菱形;

②當(dāng)的度數(shù)為__________時(shí),四邊形為正方形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)在它的娛樂性節(jié)目中每期抽出兩名場(chǎng)外幸運(yùn)觀眾,有一期甲、乙兩人被抽為場(chǎng)外幸運(yùn)觀眾,他們獲得了一次抽獎(jiǎng)的機(jī)會(huì),在如圖所示的翻獎(jiǎng)牌的正面4個(gè)數(shù)字中任選一個(gè),選中后翻開,可以得到該數(shù)字反面的獎(jiǎng)品,第一個(gè)人選中的數(shù)字第二個(gè)人不能再選擇了.

(1)如果甲先抽獎(jiǎng),那么甲獲得“手機(jī)”的概率是多少?

(2)小亮同學(xué)說:甲先抽獎(jiǎng),乙后抽獎(jiǎng),甲、乙兩人獲得“手機(jī)”的概率不同,且甲獲得“手機(jī)”的概率更大些.你同意小亮同學(xué)的說法嗎?為什么?請(qǐng)用列表或畫樹狀圖分析.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

      

如圖①,矩形的對(duì)角線交于點(diǎn),且,點(diǎn)為線段上任意一點(diǎn),以為邊作等邊三角形,連接,則之間的數(shù)量關(guān)系是 ;

2)類比延伸

如圖②,在正方形中,點(diǎn)邊上任意一點(diǎn),以為邊作正方形,為正方形的中心,連接,直接寫出的數(shù)量關(guān)系為 ;

3)拓展遷移

如圖③,在菱形中,,點(diǎn)邊上一點(diǎn),以為對(duì)角線作菱形,滿足,連接,猜想的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案