【題目】如圖,BD是△ABC的角平分線,點E,F分別在BC、AB上,且DE∥AB,EF∥AC.
(1)求證:BE=AF;
(2)若∠ABC=60°,BD=6,求四邊形ADEF的面積.
【答案】
(1)
證明: ∵DE∥AB,EF∥AC,
∴四邊形ADEF是平行四邊形,∠ABD=∠BDE,
∴AF=DE,
∵BD是△ABC的角平分線,
∴∠ABD=∠DBE,
∴∠DBE=∠BDE,
∴BE=DE,
∴BE=AF
(2)
解:過點D作DG⊥AB于點G,過點E作EH⊥BD于點H,
∵∠ABC=60°,BD是∠ABC的平分線,
∴∠ABD=∠EBD=30°,
∴DG= BD= ×6=3,
∵BE=DE,
∴BH=DH= BD=3,∴BE= =2 ,∴DE=BE=2 ,∴四邊形ADEF的面積為:DEDG=6 .
【解析】(1)由DE∥AB,EF∥AC,可證得四邊形ADEF是平行四邊形,∠ABD=∠BDE,又由BD是△ABC的角平分線,易得△BDE是等腰三角形,即可證得結論;(2)首先過點D作DG⊥AB于點G,過點E作EH⊥BD于點H,易求得DG與DE的長,
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO角⊙O于點E,延長AO交⊙O于點D,tanD= ,求 的值.
(3)在(2)的條件下,設⊙O的半徑為3,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線C:y=﹣x2+bx+c經過A(﹣3,0)和B(0,3)兩點,將這條拋物線的頂點記為M,它的對稱軸與x軸的交點記為N.
(1)求拋物線C的表達式;
(2)求點M的坐標;
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點記為M′,它的對稱軸與x軸的交點記為N′.如果以點M、N、M′、N′為頂點的四邊形是面積為16的平行四邊形,那么應將拋物線C怎樣平移?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,下列結論:①△DFE是等腰直角三角形;②四邊形CEDF的周長不變;③點C到線段EF的最大距離為1.其中正確的結論有 . (填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在平面直角從標系中,A點坐標為(0,4),B點坐標為(2,0),C(m,6)為反比例函數 圖象上一點.將△AOB繞B點旋轉至△A′O′B處.
(1)求m的值;
(2)若O′落在OC上,連接AA′交OC與D點.①求證:四邊形ACA′O′為平行四邊形; ②求CD的長度;
(3)直接寫出當AO′最短和最長時A′點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形ABOC的兩邊在坐標軸上,OB=1,點A在函數y=﹣ (x<0)的圖象上,將此矩形向右平移3個單位長度到A1B1O1C1的位置,此時點A1在函數y= (x>0)的圖象上,C1O1與此圖象交于點P,則點P的縱坐標是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,AC是⊙O的弦,∠BAC的平分線AD交⊙O于D,過點D作DE⊥AC交AC的延長線于點E,OE交AD于點F,cos∠BAC=
(1)求證:DE是⊙O的切線;
(2)若AF=8,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點F.點E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數關系(30≤x≤120),已知線段BC表示的函數關系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.
(1)當速度為50km/h、100km/h時,該汽車的耗油量分別為L/km、 L/km.
(2)求線段AB所表示的y與x之間的函數表達式.
(3)速度是多少時,該汽車的耗油量最低?最低是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com