【題目】(習(xí)題再現(xiàn))課本中有這樣一道題目:如圖,在四邊形中,分別是的中點(diǎn),.求證:.(不用證明)

(習(xí)題變式)(1)如圖,在習(xí)題再現(xiàn)的條件下,延長(zhǎng)交于點(diǎn),交于點(diǎn),求證:.

2)如圖,在中,,點(diǎn)上,,分別是的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn),連接,,求證:.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)根據(jù)中位線的性質(zhì)及平行線的性質(zhì)即可求解;

2)連接,取的中點(diǎn),連接,根據(jù)中位線的性質(zhì)證明為等邊三角形,再根據(jù)得到,得到,即可求解.

解:(1 分別是的中點(diǎn),

,.

,.

,

,

,

.

2)連接,取的中點(diǎn),連接.

∵,H分別是,BD的中點(diǎn)

,,.

,.

,

,

,

為等邊三角形.

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,現(xiàn)有長(zhǎng)的籬笆,要圍一個(gè)面積為的花圃,花圃的一邊靠墻(墻長(zhǎng)),并在與墻平行的一邊另外安裝一道寬的木門(mén),那么花圃邊的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB⊙O的直徑,C⊙O上一點(diǎn),CD⊥ABD,AD=9,BD=4,以C為圓心,CD為半徑的圓與⊙O相交于P,Q兩點(diǎn),弦PQCDE,則PEEQ的值是( )

A. 24 B. 9 C. 36 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC17.2米,設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α60°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE10米,現(xiàn)有一老人坐在MN這層臺(tái)階上曬太陽(yáng).(取1.73)

(1)求樓房的高度約為多少米?

(2)過(guò)了一會(huì)兒,當(dāng)α45°時(shí),問(wèn)老人能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、0和2.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再?gòu)囊掖须S機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)P的坐標(biāo)為(x,y).

(1)請(qǐng)用表格或樹(shù)狀圖列出點(diǎn)P所有可能的坐標(biāo);

(2)求點(diǎn)P在一次函數(shù)y=x+1圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,過(guò)點(diǎn)O作弦AD的垂線交半圓O于點(diǎn)E,交AC于點(diǎn)C,使BED=C.

(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;

(2)若AC=8,cosBED=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人同時(shí)登同一座山,甲乙兩人距地面的高度(米)與登山時(shí)間 (分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

1)乙在提速前登山的速度是______米/分鐘,乙在 地提速時(shí)距地面的高度 __________米.

2)若乙提速后,乙比甲提前了9分鐘到達(dá)山頂,請(qǐng)求出乙提速后 之間的函數(shù)關(guān)系式.

3)登山多長(zhǎng)時(shí)間時(shí),乙追上了甲,此時(shí)甲距 地的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了考察甲、乙兩種農(nóng)作物的長(zhǎng)勢(shì),分別從中抽取了10株苗,測(cè)得苗高如表(單位:cm).

9

10

11

12

7

13

10

8

12

8

8

13

12

11

10

12

7

7

9

11

小穎已求得10cmS23.6cm2).問(wèn):哪種農(nóng)作物的10株苗長(zhǎng)得比較整齊?

查看答案和解析>>

同步練習(xí)冊(cè)答案